FlinkSQL知其所以然:WindowTopN操作

大家好,我是老羊,今天我们来学习 Flink SQL 中的 Window TopN 操作。

  1. Window TopN 定义(支持 Streaming):Window TopN 是一种特殊的 TopN,它的返回结果是每一个窗口内的 N 个最小值或者最大值。
  2. 应用场景:小伙伴萌会问了,我有了 TopN 为啥还需要 Window TopN 呢?还记得上文介绍 TopN 说道的 TopN 时会出现中间结果,从而出现回撤数据的嘛?Window TopN 不会出现回撤数据,因为 Window TopN 实现是在窗口结束时输出最终结果,不会产生中间结果。而且注意,因为是窗口上面的操作,Window TopN 在窗口结束时,会自动把 State 给清除。
  3. SQL 语法标准:
SELECT [column_list]
FROM (
SELECT [column_list],
ROW_NUMBER() OVER (PARTITION BY window_start, window_end [, col_key1...]
ORDER BY col1 [asc|desc][, col2 [asc|desc]...]) AS rownum
FROM table_name) -- windowing TVF
WHERE rownum <= N [AND conditions]
  1. 实际案例:取当前这一分钟的搜索关键词下的搜索热度前 10 名的词条数据。

输入表字段:

-- 字段名         备注
-- key 搜索关键词
-- name 搜索热度名称
-- search_cnt 热搜消费热度(比如 3000)
-- timestamp 消费词条时间戳
CREATE TABLE source_table (
name BIGINT NOT NULL,
search_cnt BIGINT NOT NULL,
key BIGINT NOT NULL,
row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),
WATERMARK FOR row_time AS row_time
) WITH (
...
);
-- 输出表字段:
-- 字段名 备注
-- key 搜索关键词
-- name 搜索热度名称
-- search_cnt 热搜消费热度(比如 3000)
-- window_start 窗口开始时间戳
-- window_end 窗口结束时间戳
CREATE TABLE sink_table (
key BIGINT,
name BIGINT,
search_cnt BIGINT,
window_start TIMESTAMP(3),
window_end TIMESTAMP(3)
) WITH (
...
);
-- 处理 sql:
INSERT INTO sink_table
SELECT key, name, search_cnt, window_start, window_end
FROM (
SELECT key, name, search_cnt, window_start, window_end,
ROW_NUMBER() OVER (PARTITION BY window_start, window_end, key
ORDER BY search_cnt desc) AS rownum
FROM (
SELECT window_start, window_end, key, name, max(search_cnt) as search_cnt
-- window tvf 写法
FROM TABLE(TUMBLE(TABLE source_table, DESCRIPTOR(row_time), INTERVAL '1' MINUTES))
GROUP BY window_start, window_end, key, name
)
)
WHERE rownum <= 100

输出结果:

+I[关键词1, 词条1, 8670, 2021-1-28T22:34, 2021-1-28T22:35]
+I[关键词1, 词条2, 6928, 2021-1-28T22:34, 2021-1-28T22:35]
+I[关键词1, 词条3, 1735, 2021-1-28T22:34, 2021-1-28T22:35]
+I[关键词1, 词条4, 7287, 2021-1-28T22:34, 2021-1-28T22:35]
...

可以看到结果是符合预期的,其中没有回撤数据。

  1. SQL 语义。
  • 数据源:数据源即最新的词条下面的搜索词的搜索热度数据,消费到 Kafka 中数据后,将数据按照窗口聚合的 key 通过 hash 分发策略发送到下游窗口聚合算子。
  • 窗口聚合算子:进行窗口聚合计算,随着时间的推进,将窗口聚合结果计算完成发往下游窗口排序算子。
  • 窗口排序算子:这个算子其实也是一个窗口算子,只不过这个窗口算子为每个 Key 维护了一个 TopN 的榜单数据,接受到上游发送的窗口结果数据进行排序,随着时间的推进,窗口的结束,将排序的结果输出到下游数据汇算子。
  • 数据汇:接收到上游的数据之后,然后输出到外部存储引擎中。

分享文章:FlinkSQL知其所以然:WindowTopN操作
标题链接:http://www.mswzjz.cn/qtweb/news40/479190.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能