今天就来介绍另外一个数据处理与分析工具,叫做Polars
,它在数据处理的速度上更快,当然里面还包括两种API,一种是Eager API
,另一种则是Lazy API
,其中Eager API
和Pandas
的使用类似,语法类似差不太多,立即执行就能产生结果。
而Lazy API
和Spark
很相似,会有并行以及对查询逻辑优化的操作。
我们先来进行模块的安装,使用pip
命令
pip install polars
在安装成功之后,我们分别用Pandas
和Polars
来读取数据,看一下各自性能上的差异,我们导入会要用到的模块
import pandas as pd
import polars as pl
import matplotlib.pyplot as plt
%matplotlib inline
Pandas
读取文件本次使用的数据集是某网站注册用户的用户名数据,总共有360MB大小,我们先用Pandas
模块来读取该csv
文件
%%time
df = pd.read_csv("users.csv")
df.head()
output
可以看到用Pandas
读取CSV
文件总共花费了12秒的时间,数据集总共有两列,一列是用户名称,以及用户名称重复的次数“n”,我们来对数据集进行排序,调用的是sort_values()
方法,代码如下
%%time
df.sort_values("n", ascending=False).head()
output
Polars
来读取操作文件下面我们用Polars
模块来读取并操作文件,看看所需要的多久的时间,代码如下
%%time
data = pl.read_csv("users.csv")
data.head()
output
可以看到用polars
模块来读取数据仅仅只花费了730毫秒的时间,可以说是快了不少的,我们根据“n”这一列来对数据集进行排序,代码如下
%%time
data.sort(by="n", reverse=True).head()
output
对数据集进行排序所消耗的时间为1.39秒,接下来我们用polars模块来对数据集进行一个初步的探索性分析,数据集总共有哪些列、列名都有哪些,我们还是以熟知“泰坦尼克号”数据集为例
df_titanic = pd.read_csv("titanic.csv")
df_titanic.columns
output
['PassengerId',
'Survived',
'Pclass',
'Name',
'Sex',
'Age',
......]
和Pandas
一样输出列名调用的是columns
方法,然后我们来看一下数据集总共是有几行几列的,
df_titanic.shape
output
(891, 12)
看一下数据集中每一列的数据类型
df_titanic.dtypes
output
[polars.datatypes.Int64,
polars.datatypes.Int64,
polars.datatypes.Int64,
polars.datatypes.Utf8,
polars.datatypes.Utf8,
polars.datatypes.Float64,
......]
我们来看一下数据集当中空值的分布情况,调用null_count()
方法
df_titanic.null_count()
output
我们可以看到“Age”以及“Cabin”两列存在着空值,我们可以尝试用平均值来进行填充,代码如下
df_titanic["Age"] = df_titanic["Age"].fill_nan(df_titanic["Age"].mean())
计算某一列的平均值只需要调用mean()
方法即可,那么中位数、最大/最小值的计算也是同样的道理,代码如下
print(f'Median Age: {df_titanic["Age"].median()}')
print(f'Average Age: {df_titanic["Age"].mean()}')
print(f'Maximum Age: {df_titanic["Age"].max()}')
print(f'Minimum Age: {df_titanic["Age"].min()}')
output
Median Age: 29.69911764705882
Average Age: 29.699117647058817
Maximum Age: 80.0
Minimum Age: 0.42
我们筛选出年龄大于40岁的乘客有哪些,代码如下
df_titanic[df_titanic["Age"] > 40]
output
最后我们简单地来绘制一张图表,代码如下
fig, ax = plt.subplots(figsize=(10, 5))
ax.boxplot(df_titanic["Age"])
plt.xticks(rotation=90)
plt.xlabel('Age Column')
plt.ylabel('Age')
plt.show()
output
总体来说呢,polars
在数据分析与处理上面和Pandas
模块有很多相似的地方,其中会有一部分的API存在着差异,感兴趣的童鞋可以参考其官网:https://www.pola.rs/
网站题目:介绍一款进阶版的Pandas数据分析神器:Polars
本文URL:http://www.mswzjz.cn/qtweb/news39/314839.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能