让代码自动补全的全套流程

作者:熊唯,黄飞 ,腾讯 PCG/QQ研发中心/CV应用研究组

创新互联公司致力于互联网品牌建设与网络营销,包括网站建设、成都网站制作、SEO优化、网络推广、整站优化营销策划推广、电子商务、移动互联网营销等。创新互联公司为不同类型的客户提供良好的互联网应用定制及解决方案,创新互联公司核心团队10多年专注互联网开发,积累了丰富的网站经验,为广大企业客户提供一站式企业网站建设服务,在网站建设行业内树立了良好口碑。

AI 如果真的可以写代码了,程序员将何去何从?近几年,NLP 领域的生成式任务有明显的提升,那通过 AI 我们可以让代码自动完成后续补全吗?本文主要介绍了如何使用 GPT2 框架实现代码自动补全的功能。

如果 AI 真的可以自己写代码了,程序员将何去何从?

我去年做过一个代码补全的小功能,打包为 androidStudio 插件,使用效果如下:

代码补全模型预测出的结果有时的确会惊吓到我,这也能学到~? 那如果给它见识了全世界的优秀代码,再给足够量级参数和优秀的模型框架,真的可以实现需求作为输入,直接输出代码吗?

"我的需求讲完了,你的代码呢?" 希望可以看到这一天。

代码补齐功能有其他优秀插件也已实现,比如 tabnine,Kite 和国产的 aixcoder。本文主要介绍下代码补全功能需要实现的整套流程。主要包括数据,算法和工程。

数据

众所周知,算法工程师大部分时间都在处理数据。

深度学习是使用大数据训练模型的一个过程,数据是很重要的一个模块。人是会累的,休息不好还导致记忆不好。AI 是你给多少数据它就能存储接收多少数据,学不到信息那是人的错,给的数据不好或者算法设计不好。所以我们先尽可能多的准备好训练数据。

1、数据采集

本文的目的是代码补全,训练数据就是代码段。考虑到每种语言风格和语法都不一致,所以单个模型只针对一种代码语言。

我使用的训练数据主要来源于 GitHub,编写了一个简单的爬虫代码,指定语言后根据 stars 的排序下载工程。

Github 的 search API 官方地址:

https://developer.github.com/v3/search/

2、数据清理

直接下载的数据肯定是不能直接用的,我们还需要对数据进行清理。

首先,我们的训练数据只需要工程中的代码文件,以 java 工程为例,我们只保留.java 结尾的文件,其他文件可剔除。

其次,我的代码补全目标是代码段,不针对注释功能。而且对于代码补全训练时,我们是会给定一定范围的上文,如果存在注释段会占用有效代码信息。另外注释除英文外其他字符不在我的训练 vocab 范围内,所以需要对代码中注释和日志进行清理。

1.删除代码行中存在除符号和英文外的字符

2.删除日志行

3.删除注释行,主要针对以下格式

 
 
 
 
  1. /* 注释文本*/ 
  2.  
  3. /** 
  4. 注释段落 
  5. */ 
  6.  
  7. // 注释文本 
  8.  
  9.  code //注释 

经过以上数据清理后,得到纯代码数据。

3、数据编码

得到了训练数据后还需要把代码文本进行编码。本文使用的是 bpe(byte pair encoder)字节对编码,主要为了数据压缩。bpe 简单理解为将一个单词再拆分为多个字母组合,比如 tencent 拆分为 ten-cent,这些组合方式则是根据大量数据,统计频率得到。由于我们期待的代码补全功能是在行首输入几个字母,根据上文预期出本行内容。

假设 tensorflow 这个 token 被编码对应到一个 id,那我希望输入 ten 就输出 tensorflow 是无法实现的。所以在训练过程中,我会随机把 token 打断,比如将 tensorflow 打断为 t-en-sor-flow 进行编码,打断原则是被切分的部分一定要在词汇表中。数据编码后,代码的每个 token 被编码为 1~N 个 id。模型预测到的 id 反编码为 token 即可。回车符认为是预测的终止符。经过以上处理,我们就准备好了训练数据,下面就可以进行算法部分了。

模型算法

众所周知,算法工程师大部分时间都在研究算法。

在腾讯文档的错别字纠错需求中,我们采用了基于 LSTM 的 seq2seq 以及 facebook 提出的基于 CNN 的 seq2seq,可以得到不错的纠错效果。直到 NLP 出现了一个"网红"--BERT,采用后精度直接提升 8 个点左右,不亏是 google。下面先简单介绍下 bert 和 gpt2。

BERT 和 GPT2

2017 年中 google 提出了 Transformer 结构。不用 rnn,不用 cnn,提出 attention is all you need。2018 年 openAI 采用了 transformers 结构在 18 年发布了 GPT。同年 google AI Language 发布了 bert 论文,提出的 BERT 模型在 11 个 NLP 任务上刷新了记录。2019 年 openAI 又推出了 GPT-2 模型。。

BERT(Bidirectional Encoder Representation from Transformers)是基于 transformers 框架的 encoder 部分,自编码语言模型,适合 N-1(比如句子分类),N-N(比如词性标注)的任务,但是它并不适合做生成任务。

GPT(Generative Pre-Training)基于 transformers 的 decoder 部分,自回归语言模型,适合生成式任务。

Transformer框架图

GPT2和BTER框架示意图

代码补全功能就是基于 GPT2 框架,OPenAI 官方提供了多套 GPT2 预训练模型:

官方提供GPT2参数

作为一个经常要把模型部署到移动端的 CVer,看到这个参数级别,我选择最小的模型进行 finetune。

对于 GPT 算法,下面这篇文章讲的很好,感兴趣同学可以看看:

https://zhuanlan.zhihu.com/p/137350403

GPT2的预测过程

本文在训练中使用 512 个上文,预测到回车符为终止。模型网络使用超参:12 个层,768 个隐藏节点,12 个 heads,采用了 uber 的 Horovod 分布式框架进行训练。

infer 阶段采用 beam-search 会导致整个预测过程特别耗时,所以参考了https://arxiv.org/abs/1904.09751论文,采用 top-k sampling,每次预测 top3 的结果再通过概率阈值过滤后作为最终候选输出。

最终 infer 效果:

输入一段代码,预测出后续代码,以回车符截止。

工程

众所周知,算法工程师大部分时间都在做工程。

训练出模型后,还要把模型应用起来,所以还需要一些工程工作需要实现。代码补全功能,最合适的应用场景就是上 IDE。nlp 模型不太适合在本机部署,最终选择了在 GPU 机器上部署模型,然后终端通过 http 请求获取预测文本显示的方案。

后台部署

Flask 是一个 Web 应用程序框架,灵活,轻便,容易上手。本文简单介绍如何利用 flask 启动一个 web 服务,以及如何访问和调用我们的功能接口。首先我们创建一个 conda 环境:

 
 
 
 
  1. conda create -n flask python=3.6 
  2. source activate flask 
  3. pip install flask 

代码中增加一个接口函数:

 
 
 
 
  1. from flask import Flask 
  2. from flask import request 
  3. app = Flask() 
  4.  
  5.  
  6. # route把一个函数绑定到对应的 url 上 
  7. @app.route("/plugin",methods=['GET',]) 
  8. def send(): 
  9.     data = request.args.get('data') 
  10.    # 模型预测逻辑 
  11.     out =  model_infer(data) 
  12.     return out 
  13.  
  14. if __name__ == '__main__': 
  15.     app.run(host='0.0.0.0',port=8080, debug=False) 

执行 run.py 代码,后台服务开启运行:

客户端请求:

 
 
 
 
  1. url = http://ip:8080/plugin?data="输入" 

其中 model_infer 函数需要实现模型的 infer 前向计算逻辑,从请求中获取 data 字段作为输入,infer 预测的结果列表作为输出返回给调用方。

经过上面的工作,我们已经提供了一个服务接口,返回我们代码补全的预测结果。

插件编写

最后一步就是如何在 IDE 上使用功能了。我们要开发 AS 的插件,需要使用 IntelliJ,首先需要在本机安装配置 IntelliJ IDEA

下载地址:

https://www.jetbrains.com/idea/download/

社区版源码:

https://github.com/JetBrains/intellij-community

好用的插件可以节省程序员很多时间,在插件实现时,我还添加了一个小的 git-blame 功能,实时查看指定行的 git 提交人,对于手 Q 这种多人合作的工作,比较实用。大家也可以通过 IntelliJ 自己开发一些常用功能。

gitBlame 的主要代码:

 
 
 
 
  1. public class GitBlame extends AnAction { 
  2.  
  3.     private void showPopupBalloon(final Editor editor, final String result) { 
  4.         ApplicationManager.getApplication().invokeLater(new Runnable() { 
  5.             public void run() { 
  6.                 JBPopupFactory factory = JBPopupFactory.getInstance(); 
  7.                 factory.createHtmlTextBalloonBuilder(result, null, new JBColor(new Color(186, 238, 186), new Color(73, 117, 73)), null) 
  8.                         .setFadeoutTime(5000) 
  9.                         .createBalloon() 
  10.                         .show(factory.guessBestPopupLocation(editor), Balloon.Position.below); 
  11.             } 
  12.         }); 
  13.     } 
  14.  
  15.     @Override 
  16.     public void actionPerformed(AnActionEvent e) { 
  17.         // TODO: insert action logic here 
  18.         //获得当前本地代码根目录 
  19.         String base_path = e.getProject().getBasePath(); 
  20.         String file_path = e.getProject().getProjectFilePath(); 
  21.         //获取编辑mEditor 
  22.         final Editor mEditor = e.getData(PlatformDataKeys.EDITOR); 
  23.         if (null == mEditor) { 
  24.             return; 
  25.         } 
  26.         SelectionModel model = mEditor.getSelectionModel(); 
  27.         final String selectedText = model.getSelectedText(); 
  28.         if (TextUtils.isEmpty(selectedText)) { 
  29.             return; 
  30.         } 
  31.  
  32.         //获取当前编辑文档的目录 
  33.         PsiFile mPsifile = e.getData(PlatformDataKeys.PSI_FILE); 
  34.         VirtualFile file = mPsifile.getContainingFile().getOriginalFile().getVirtualFile(); 
  35.         if (file != null && file.isInLocalFileSystem()) { 
  36.             file_path = file.getCanonicalPath(); 
  37.         } 
  38.         //gitkit工具 
  39.         JGitUtil gitKit = new JGitUtil(); 
  40.         String filename = file_path.replace(base_path+"/",""); 
  41.         //得到blame信息 
  42.         int line_index = mEditor.getSelectionModel().getSelectionStartPosition().getLine(); 
  43.         String blame_log = gitKit.git_blame(base_path,filename,line_index); 
  44.  
  45.         //展示 
  46.         if (!blame_log.isEmpty()){ 
  47.             showPopupBalloon(mEditor, blame_log); 
  48.         } 
  49.     } 

本文的代码补全插件主要代码逻辑为调用上一步后台部署的请求。

 
 
 
 
  1. // 请求url格式(和flask接口一致) 
  2. String baseUrl = "http://ip:8080/plugin?data="; 
  3. // 获取当前编辑位置文本 
  4. PsiFile str = position.getContainingFile(); 
  5. // 根据模型上文限制获取代码端 
  6. String data = getContentCode(); 
  7. String url = baseUrl+data; 
  8. // 发送请求 
  9. String result = HttpUtils.doGet(url); 
  10. // 后处理逻辑,在提示框显示预测结果 
  11. show() 

最终呈现形式:

可以看出,模型的预计结果还是不错的~

以上为代码补全功能的实现和应用,算是 AI 自动写代码的一小步。

AI 能否自己写代码,达到疑犯追踪里 TM 那种水平,我不敢说一定不可能,但以我目前的认知是实现不了,毕竟写代码的是程序员,给算法喂数据的是程序员,算法设计还是程序员,AI 连帮人类解 bug 的功能都还不出现!\

参考资料:

[1] https://arxiv.org/abs/1706.03762

[2] https://arxiv.org/abs/1810.04805

[3] https://github.com/openai/gpt-2

[4] https://arxiv.org/abs/1904.09751

本文名称:让代码自动补全的全套流程
文章出自:http://www.mswzjz.cn/qtweb/news38/98238.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能