这里有8个流行的Python可视化工具包,你喜欢哪个?

用 Python 创建图形的方法有很多,但是哪种方法是***的呢?当我们做可视化之前,要先明确一些关于图像目标的问题:你是想初步了解数据的分布情况?想展示时给人们留下深刻印象?也许你想给某人展示一个内在的形象,一个中庸的形象?

站在用户的角度思考问题,与客户深入沟通,找到宁江网站设计与宁江网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都网站设计、成都做网站、企业官网、英文网站、手机端网站、网站推广、主机域名、虚拟空间、企业邮箱。业务覆盖宁江地区。

本文将介绍一些常用的 Python 可视化包,包括这些包的优缺点以及分别适用于什么样的场景。这篇文章只扩展到 2D 图,为下一次讲 3D 图和商业报表(dashboard)留了一些空间,不过这次要讲的包中,许多都可以很好地支持 3D 图和商业报表。

Matplotlib、Seaborn 和 Pandas

把这三个包放在一起有几个原因:首先 Seaborn 和 Pandas 是建立在 Matplotlib 之上的,当你在用 Seaborn 或 Pandas 中的 df.plot() 时,用的其实是别人用 Matplotlib 写的代码。因此,这些图在美化方面是相似的,自定义图时用的语法也都非常相似。

当提到这些可视化工具时,我想到三个词:探索(Exploratory)、数据(Data)、分析(Analysis)。这些包都很适合***次探索数据,但要做演示时用这些包就不够了。

Matplotlib 是比较低级的库,但它所支持的自定义程度令人难以置信(所以不要简单地将其排除在演示所用的包之外!),但还有其它更适合做展示的工具。

Matplotlib 还可以选择样式(style selection),它模拟了像 ggplot2 和 xkcd 等很流行的美化工具。下面是我用 Matplotlib 及相关工具所做的示例图:

在处理篮球队薪资数据时,我想找出薪资中位数***的团队。为了展示结果,我将每个球队的工资用颜色标成条形图,来说明球员加入哪一支球队才能获得更好的待遇。

 
 
 
 
  1. import seaborn as sns 
  2. import matplotlib.pyplot as plt 
  3.  
  4. color_order = ['xkcd:cerulean', 'xkcd:ocean', 
  5.                 'xkcd:black','xkcd:royal purple', 
  6.                 'xkcd:royal purple', 'xkcd:navy blue', 
  7.                 'xkcd:powder blue', 'xkcd:light maroon',  
  8.                 'xkcd:lightish blue','xkcd:navy'] 
  9.  
  10. sns.barplot(x=top10.Team, 
  11.             y=top10.Salary, 
  12.             palette=color_order).set_title('Teams with Highest Median Salary') 
  13.  
  14. plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) 

第二个图是回归实验残差的 Q-Q 图。这张图的主要目的是展示如何用尽量少的线条做出一张有用的图,当然也许它可能不那么美观。

 
 
 
 
  1. import matplotlib.pyplot as plt 
  2. import scipy.stats as stats 
  3.  
  4. #model2 is a regression model 
  5. log_resid = model2.predict(X_test)-y_test 
  6. stats.probplot(log_resid, dist="norm", plot=plt) 
  7. plt.title("Normal Q-Q plot") 
  8. plt.show() 

最终证明,Matplotlib 及其相关工具的效率很高,但就演示而言它们并不是***的工具。

ggplot(2)

你可能会问,「Aaron,ggplot 是 R 中最常用的可视化包,但你不是要写 Python 的包吗?」。人们已经在 Python 中实现了 ggplot2,复制了这个包从美化到语法的一切内容。

在我看过的所有材料中,它的一切都和 ggplot2 很像,但这个包的好处是它依赖于 Pandas Python 包。不过 Pandas Python 包最近弃用了一些方法,导致 Python 版本不兼容。

如果你想在 R 中用真正的 ggplot(除了依赖关系外,它们的外观、感觉以及语法都是一样的),我在另外一篇文章中对此进行过讨论。

也就是说,如果你一定要在 Python 中用 ggplot,那你就必须要安装 0.19.2 版的 Pandas,但我建议你***不要为了使用较低级的绘图包而降低 Pandas 的版本。

ggplot2(我觉得也包括 Python 的 ggplot)举足轻重的原因是它们用「图形语法」来构建图片。基本前提是你可以实例化图,然后分别添加不同的特征;也就是说,你可以分别对标题、坐标轴、数据点以及趋势线等进行美化。

下面是 ggplot 代码的简单示例。我们先用 ggplot 实例化图,设置美化属性和数据,然后添加点、主题以及坐标轴和标题标签。

 
 
 
 
  1. #All Salaries 
  2. ggplot(data=df, aes(x=season_start, y=salary, colour=team)) + 
  3.   geom_point() + 
  4.   theme(legend.position="none") + 
  5.   labs(title = 'Salary Over Time', x='Year', y='Salary ($)') 

Bokeh

Bokeh 很美。从概念上讲,Bokeh 类似于 ggplot,它们都是用图形语法来构建图片,但 Bokeh 具备可以做出专业图形和商业报表且便于使用的界面。为了说明这一点,我根据 538 Masculinity Survey 数据集写了制作直方图的代码:

 
 
 
 
  1. import pandas as pd 
  2. from bokeh.plotting import figure 
  3. from bokeh.io import show 
  4.  
  5. # is_masc is a one-hot encoded dataframe of responses to the question: 
  6. # "Do you identify as masculine?" 
  7.  
  8. #Dataframe Prep 
  9. counts = is_masc.sum() 
  10. resps = is_masc.columns 
  11.  
  12. #Bokeh 
  13. p2 = figure(title='Do You View Yourself As Masculine?', 
  14.           x_axis_label='Response', 
  15.           y_axis_label='Count', 
  16.           x_range=list(resps)) 
  17. p2.vbar(x=resps, top=counts, width=0.6, fill_color='red', line_color='black') 
  18. show(p2) 
  19.  
  20. #Pandas 

用 Bokeh 表示调查结果

红色的条形图表示 538 个人关于「你认为自己有男子汉气概吗?」这一问题的答案。9~14 行的 Bokeh 代码构建了优雅且专业的响应计数直方图——字体大小、y 轴刻度和格式等都很合理。

我写的代码大部分都用于标记坐标轴和标题,以及为条形图添加颜色和边框。在制作美观且表现力强的图片时,我更倾向于使用 Bokeh——它已经帮我们完成了大量美化工作。

用 Pandas 表示相同的数据

蓝色的图是上面的第 17 行代码。这两个直方图的值是一样的,但目的不同。在探索性设置中,用 Pandas 写一行代码查看数据很方便,但 Bokeh 的美化功能非常强大。

Bokeh 提供的所有便利都要在 matplotlib 中自定义,包括 x 轴标签的角度、背景线、y 轴刻度以及字体(大小、斜体、粗体)等。下图展示了一些随机趋势,其自定义程度更高:使用了图例和不同的颜色和线条。

Bokeh 还是制作交互式商业报表的***工具。

Plotly

Plotly 非常强大,但用它设置和创建图形都要花费大量时间,而且都不直观。在用 Plotly 忙活了大半个上午后,我几乎什么都没做出来,干脆直接去吃饭了。我只创建了不带坐标标签的条形图,以及无法删掉线条的「散点图」。Ploty 入门时有一些要注意的点:

  • 安装时要有 API 秘钥,还要注册,不是只用 pip 安装就可以;
  • Plotly 所绘制的数据和布局对象是***的,但并不直观;
  • 图片布局对我来说没有用(40 行代码毫无意义!)

但它也有优点,而且设置中的所有缺点都有相应的解决方法:

  • 你可以在 Plotly 网站和 Python 环境中编辑图片;
  • 支持交互式图片和商业报表;
  • Plotly 与 Mapbox 合作,可以自定义地图;
  • 很有潜力绘制优秀图形。

以下是我针对这个包编写的代码:

 
 
 
 
  1. #plot 1 - barplot 
  2. # **note** - the layout lines do nothing and trip no errors 
  3. data = [go.Bar(x=team_ave_df.team, 
  4.               y=team_ave_df.turnovers_per_mp)] 
  5.  
  6. layout = go.Layout( 
  7.  
  8.     title=go.layout.Title( 
  9.         text='Turnovers per Minute by Team', 
  10.         xref='paper', 
  11.         x=0 
  12.     ), 
  13.  
  14.     xaxis=go.layout.XAxis( 
  15.         title = go.layout.xaxis.Title( 
  16.             text='Team', 
  17.             font=dict( 
  18.                     family='Courier New, monospace', 
  19.                     size=18, 
  20.                     color='#7f7f7f' 
  21.                 ) 
  22.         ) 
  23.     ), 
  24.  
  25.     yaxis=go.layout.YAxis( 
  26.         title = go.layout.yaxis.Title( 
  27.             text='Average Turnovers/Minute', 
  28.             font=dict( 
  29.                     family='Courier New, monospace', 
  30.                     size=18, 
  31.                     color='#7f7f7f' 
  32.                 ) 
  33.         ) 
  34.     ), 
  35.  
  36.     autosize=True, 
  37.     hovermode='closest') 
  38.  
  39. py.iplot(figure_or_data=data, layoutlayout=layout, filename='jupyter-plot', sharing='public', fileopt='overwrite') 
  40.  
  41.  
  42.  
  43. #plot 2 - attempt at a scatterplot 
  44. data = [go.Scatter(x=player_year.minutes_played, 
  45.                   y=player_year.salary, 
  46.                   marker=go.scatter.Marker(color='red', 
  47.                                           size=3))] 
  48.  
  49. layout = go.Layout(title="test", 
  50.                 xaxis=dict(title='why'), 
  51.                 yaxis=dict(title='plotly')) 
  52.  
  53. py.iplot(figure_or_data=data, layoutlayout=layout, filename='jupyter-plot2', sharing='public') 
  54.  
  55. [Image: image.png] 

表示不同 NBA 球队每分钟平均失误数的条形图

表示薪水和在 NBA 的打球时间之间关系的散点图

总体来说,开箱即用的美化工具看起来很好,但我多次尝试逐字复制文档和修改坐标轴标签时却失败了。但下面的图展示了 Plotly 的潜力,以及我为什么要在它身上花好几个小时:

Plotly 页面上的一些示例图

Pygal

Pygal 的名气就不那么大了,和其它常用的绘图包一样,它也是用图形框架语法来构建图像的。由于绘图目标比较简单,因此这是一个相对简单的绘图包。使用 Pygal 非常简单:

  • 实例化图片;
  • 用图片目标属性格式化;
  • 用 figure.add() 将数据添加到图片中。

我在使用 Pygal 的过程中遇到的主要问题在于图片渲染。必须要用 render_to_file 选项,然后在 web 浏览器中打开文件,才能看见我刚刚构建的东西。

最终看来这是值得的,因为图片是交互式的,有令人满意而且便于自定义的美化功能。总而言之,这个包看起来不错,但在文件的创建和渲染部分比较麻烦。

Networkx

虽然 Networkx 是基于 matplotlib 的,但它仍是图形分析和可视化的***解决方案。图形和网络不是我的专业领域,但 Networkx 可以快速简便地用图形表示网络之间的连接。以下是我针对一个简单图形构建的不同的表示,以及一些从斯坦福 SNAP 下载的代码(关于绘制小型 Facebook 网络)。

我按编号(1~10)用颜色编码了每个节点,代码如下:

 
 
 
 
  1. options = { 
  2.     'node_color' : range(len(G)), 
  3.     'node_size' : 300, 
  4.     'width' : 1, 
  5.     'with_labels' : False, 
  6.     'cmap' : plt.cm.coolwarm 
  7. nx.draw(G, **options) 

用于可视化上面提到的稀疏 Facebook 图形的代码如下:

 
 
 
 
  1. import itertools 
  2. import networkx as nx 
  3. import matplotlib.pyplot as plt 
  4.  
  5. f = open('data/facebook/1684.circles', 'r') 
  6. circles = [line.split() for line in f] 
  7. f.close() 
  8.  
  9. network = [] 
  10. for circ in circles: 
  11.     cleaned = [int(val) for val in circ[1:]] 
  12.     network.append(cleaned) 
  13.  
  14. G = nx.Graph() 
  15. for v in network: 
  16.     G.add_nodes_from(v) 
  17.  
  18. edges = [itertools.combinations(net,2) for net in network] 
  19.  
  20. for edge_group in edges: 
  21.     G.add_edges_from(edge_group) 
  22.  
  23. options = { 
  24.     'node_color' : 'lime', 
  25.     'node_size' : 3, 
  26.     'width' : 1, 
  27.     'with_labels' : False, 
  28. nx.draw(G, **options) 

这个图形非常稀疏,Networkx 通过***化每个集群的间隔展现了这种稀疏化。

有很多数据可视化的包,但没法说哪个是***的。希望阅读本文后,你可以了解到在不同的情境下,该如何使用不同的美化工具和代码。

原文链接:

https://towardsdatascience.com/reviewing-python-visualization-packages-fa7fe12e622b

【本文是专栏机构“机器之心”的原创译文,微信公众号“机器之心( id: almosthuman2014)”】

网页名称:这里有8个流行的Python可视化工具包,你喜欢哪个?
网页网址:http://www.mswzjz.cn/qtweb/news38/49738.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能