Python轻松操作数据库(python操作数据库)

作为目前更受欢迎的编程语言之一,Python已经成为了许多开发人员的首选语言。Python的优点包括代码易读、语法简单、大量支持库等优点。与此同时,Python的生态系统也非常丰富,包含了大量的第三方库,可用于执行各种各样的任务。

其中,Python在操作数据库方面表现得尤为出色。Python可以运用不同的库连接和操作多种类型的数据库,这使得它成为了数据科学家和软件开发人员更受欢迎的语言之一。在本文中,我们将介绍在Python中使用SQLAlchemy和Psycopg2库操作数据库的方法。

SQLAlchemy库

SQLAlchemy是一个开源Python库,用于操作关系数据库。它提供了一种简单且灵活的方式,用Python语言操作关系型数据库(SQL数据库)。 SQLalchemy被广泛应用于Web应用程序中,如Flask、Django、Bottle等框架。SQLAlchemy通过ORM,提供了一种类似于SQL语言的操作方式。

安装SQLAlchemy

要使用SQLAlchemy,需要在Python环境中安装它。可以通过以下方式安装:

“`python

!pip install sqlalchemy

“`

连接数据库

在使用SQLAlchemy库之前,必须先建立与数据库的连接。为此,需要定义数据库的URL,该URL包含以下元素:

– 数据库引擎(dialect) – 在SqlAlchemy中,这通常是一个带Chrome或mysql的名称

– 连接的用户名和密码

– 数据库主机和端口

– 数据库名称

下面是一个连接到SQL服务器的示例:

“`python

from sqlalchemy import create_engine

engine = create_engine(‘mssql+pyodbc://user:pass@dns’)

“`

在上面的示例中,创建了一个SQLAlchemy引擎,以便使用ODBC连接来连接到SQL服务器。可以将engine变量用于打开数据库连接的控制。完成之后,就可以使用SQLAlchemy来执行SQL操作。

执行SQL查询

可使用SQLAlchemy CRUD(CRUD(Create, Read, Update, Delete)操作。

下面是一个从本地SQLite数据库创建表格的示例:

“`python

from sqlalchemy import create_engine, Table, Column, Integer, MetaData

engine = create_engine(‘sqlite:///some.db’)

metadata = MetaData()

table = Table(‘mytable’, metadata,

Column(‘id’, Integer, primary_key=True),

Column(‘name’, String),

Column(‘age’, Integer),

)

metadata.create_all(engine)

“`

在上面的示例中,安装并创建Meta到和表的定义。这个表在SQLite数据库中使用用户ID、名称和年龄列创建一个列。结果表User是由元数据对象的调用创建的。调用metadata.create_all(engine)将表创建到已定义的数据库中。

现在,使用SQLAlchemy来执行SQL SELECT语句从User表中选择所有条目的示例。

“`python

from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData

from sqlalchemy.sql import select

engine = create_engine(‘sqlite:///some.db’)

metadata = MetaData()

mytable = Table(‘mytable’, metadata,

Column(‘id’, Integer, primary_key=True),

Column(‘name’, String),

Column(‘age’, Integer),

)

conn = engine.connect()

select_st = select([mytable])

result = conn.execute(select_st)

for row in result:

print(row)

“`

在此示例中,从mytable中选择了所有条目,每个条目都包含一个id、name和age字段。然后使用engine.connect()打开一个数据库连接,该连接可以执行SQL查询。使用conn.execute(select_all)执行查询,并将结果迭代打印到命令行中。

Psycopg2

与SQLAlchemy一样,Psycopg2是一种与Python库兼容的PostgreSQL数据库开发库。它可以用来连接、查询、读写和管理PostgreSQL数据库。一些典型的应用场景包括后端开发、数据科学、数据分析、GIS、Web应用程序和云计算等。

安装Psycopg2

在Python环境中,可以使用以下安装psycopg2:

“`python

!pip install psycopg2-binary

“`

连接到数据库

连接到PostgreSQL数据库与连接到其他数据库类似。类似地,必须指定连接字符串(dsn),该字符串包含以下信息:

– 主机名、端口号

– 用户名

– 密码

– 数据库名

可以使用psycopg2.connect()来创建连接:

“`python

import psycopg2

dsn_database = “someDatabase”

dsn_hostname = “mydbinstance.somehost.net”

dsn_port = “5432”

dsn_uid = “someUser”

dsn_pwd = “secret”

conn_string = “host=”+dsn_hostname+” port=”+dsn_port+” dbname=”+dsn_database+” user=”+dsn_uid+” password=”+dsn_pwd

conn = psycopg2.connect(conn_string)

“`

在上面的示例中,将所有连接信息添加到一个连接字符串中,并使用psycopg2.connect()创建连接。

执行SQL查询

下面是一个使用Psycopg2执行SQL查询的示例。在此示例中,创建了一个数据库表(employees),并向其添加一些数据。接下来,以选择所有记录并打印结果的方式使用SELECT查询对表执行操作。

“`python

#!/usr/bin/python

import psycopg2

def mn():

conn_string = “host=’localhost’ dbname=’mydatabase’ user=’myusername’ password=’mypassword'”

try:

conn = psycopg2.connect(conn_string)

cursor = conn.cursor()

# 创建employees表

cursor.execute(“CREATE TABLE employees (id SERIAL PRIMARY KEY, first_name VARCHAR(50), last_name VARCHAR(50), hire_date DATE)”)

# 插入一个新的employee

cursor.execute(“INSERT INTO employees (first_name,last_name,hire_date) VALUES (‘John’, ‘Doe’, ‘2023-01-01’)”)

# 获取所有employees

cursor.execute(“SELECT * FROM employees”)

rows = cursor.fetchall()

for row in rows:

print(row)

cursor.close()

conn.close()

except Exception as e:

print(str(e))

if __name__ == “__mn__”:

mn()

“`

在上面的示例中,首先我们创建一个employees表格,它包含id(自增长主键),first_name,last_name和hire_date字段。然后,我们添加了一个名为John Doe的新员工。使用SELECT获取并打印所有employee的结果。

在本文中,我们介绍了Python中使用SQLAlchemy和Psycopg2库操作数据库的方法。无论你使用的是何种数据库,都可以使用Python来操作数据库。Python在操作数据库方面的优点包括简洁易读的代码、广泛可用的库以及可运用不同的库连接和操作多种类型的数据库等。无论你是数据科学家、软件开发人员还是其他人员,掌握Python操作数据库的技能对你的工作和学习都非常有帮助。

相关问题拓展阅读:

  • 在python3下怎样用flask-sqlalchemy对mysql数据库操作

在python3下怎样用flask-sqlalchemy对mysql数据库操作

以 Debian/Ubuntu 为例(请确保有管理员权限):

1.MySQL

代码如者粗伍下:

apt-get install mysql-server

apt-get install mysql-client

apt-get install libmysqlclient15-dev

2.python-mysqldb

代码如下:

apt-get install python-mysqldb

3.easy_install

代码如下:

wget

python ez_setup.py

4.MySQL-Python

代码如下:

easy_install MySQL-Python

5.SQLAlchemy

代码如下:

easy_install SQLAlchemy

6、安装完成后使用下面代码测试连接

代码如下:

from sqlalchemy import create_engine

from sqlalchemy.orm import sessionmaker

DB_CONNECT_STRING = ‘mysql+

engine = create_engine(DB_CONNECT_STRING, echo=True)

DB_Session = sessionmaker(bind=engine)

session = DB_Session()

7、数据操作(增删改查)

代码如下:

from sqlalchemy import func, or_, not_

user = User(name=’a’)

session.add(user)

user = User(name=’b’)

session.add(user)

user = User(name=’a’)

session.add(user)

user = User()

session.add(user)

session.commit()

query = session.query(User)

print query # 显示SQL 语句

print query.statement # 同上

for user in query: # 遍历时查询

print user.name

print query.all() # 返回的是一个类似列表的对象

print query.first().name # 记凳乱录不存在时,first() 会返回 None

# print query.one().name # 不存在,或有多行记录时会抛出异常

print query.filter(User.id == 2).first().name

print query.get(2).name # 以主键获取,等效于上句

print query.filter(‘id = 2’).first().name # 支首或持字符串

query2 = session.query(User.name)

print query2.all() # 每行是个元组

print query2.limit(1).all() # 最多返回 1 条记录

print query2.offset(1).all() # 从第 2 条记录开始返回

print query2.order_by(User.name).all()

print query2.order_by(‘name’).all()

print query2.order_by(User.name.desc()).all()

print query2.order_by(‘name desc’).all()

print session.query(User.id).order_by(User.name.desc(), User.id).all()

print query2.filter(User.id == 1).scalar() # 如果有记录,返回之一条记录的之一个元素

print session.query(‘id’).select_from(User).filter(‘id = 1’).scalar()

print query2.filter(User.id > 1, User.name != ‘a’).scalar() # and

query3 = query2.filter(User.id > 1) # 多次拼接的 filter 也是 and

query3 = query3.filter(User.name != ‘a’)

print query3.scalar()

print query2.filter(or_(User.id == 1, User.id == 2)).all() # or

print query2.filter(User.id.in_((1, 2))).all() # in

query4 = session.query(User.id)

print query4.filter(User.name == None).scalar()

print query4.filter(‘name is null’).scalar()

print query4.filter(not_(User.name == None)).all() # not

print query4.filter(User.name != None).all()

print query4.count()

print session.query(func.count(‘*’)).select_from(User).scalar()

print session.query(func.count(‘1’)).select_from(User).scalar()

print session.query(func.count(User.id)).scalar()

print session.query(func.count(‘*’)).filter(User.id > 0).scalar() # filter() 中包含 User,因此不需要指定表

print session.query(func.count(‘*’)).filter(User.name == ‘a’).limit(1).scalar() == 1 # 可以用 limit() 限制 count() 的返回数

print session.query(func.sum(User.id)).scalar()

print session.query(func.now()).scalar() # func 后可以跟任意函数名,只要该数据库支持

print session.query(func.current_timestamp()).scalar()

print session.query(func.md5(User.name)).filter(User.id == 1).scalar()

query.filter(User.id == 1).update({User.name: ‘c’})

user = query.get(1)

print user.name

user.name = ‘d’

session.flush() # 写数据库,但并不提交

print query.get(1).name

session.delete(user)

session.flush()

print query.get(1)

session.rollback()

print query.get(1).name

query.filter(User.id == 1).delete()

session.commit()

print query.get(1)

唔,貌似题主问题已经解决了,挺好的。我还是答一下,给后续需要的新手一点帮助。

这个问题经常难道新手一下,因为大部分教程里(包括经典

的《Flask

Web开发》一书),告诉了我们如何使用flask-sqlalchemy操作sqlite,但在生产环境(线上网站)上,我们肯定是则返肆使用MySQL或其

他,而大部分的教程里,又告诉我们flask-sqlalchemy使用MySQL的方式是:

结果我们照葫芦画瓢的来一下,发现压根不行,写好的网站一跟数据库沾边就报错。

Python和MySQL是「两个国家的人」,他们互不相通,因而需要一个中间代理,让双方互通有无,跟翻译一样(这比喻不准确,但足够你明白意思就行)。翻译又有很多选择,不同的翻译各有特色。

主解决问题选择的翻译是「flask-mysqldb」,其背后的主子是「MySQL-python」。恩,说到这里你应该知道,「flask-xxx」

这样的包都是对背后主子进行了适合Flask封装的插件,跟包子皮一样,里面的馅才是重点,「flask-mysqldb」的馅是「MySQL-

python」。

而我要推荐的是另一个翻译:PyMySQL,这玩意的好处是可以做异步(「MySQL-python」也可以,个人口味罢了),简而言世闷之,网站访问量大了就需要考虑异步,现在别管这是啥子。孙轿这玩意的安装方式是:

pip install PyMySQL

之后,数据库连接由:

改为

mysql+

就可以了。

python 操作数据库的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于python 操作数据库,Python轻松操作数据库,在python3下怎样用flask-sqlalchemy对mysql数据库操作的信息别忘了在本站进行查找喔。

香港服务器选创新互联,2H2G首月10元开通。
创新互联(www.cdcxhl.com)互联网服务提供商,拥有超过10年的服务器租用、服务器托管、云服务器、虚拟主机、网站系统开发经验。专业提供云主机、虚拟主机、域名注册、VPS主机、云服务器、香港云服务器、免备案服务器等。

文章标题:Python轻松操作数据库(python操作数据库)
本文地址:http://www.mswzjz.cn/qtweb/news37/388687.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能