Python中经常使用小技巧

Python 是一门可读性和简洁性都非常好的编程语言,经常可以用简单的一行代码即实现其他语言需要多行代码才可以实现的功能,下面为大家讲解一下Python使用小技巧

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:空间域名、网站空间、营销软件、网站建设、闻喜网站维护、网站推广。

1. 反转字符串

虽然看似是很基础的操作,但是用char循环来反转字符串可能会非常繁琐麻烦。幸运的是,Python包含了一个简单的内置操作来准确地执行这个任务,我们只需访问字符串上的索引::-1。

a = "!dlrow olleH"
backward = a[::-1]

2. Dims作为变量

在大多数语言中,为了将数组放入一组变量中需迭代循环值,或按位置访问暗点,如下所示:

firstdim = array[1]

然而,在Python中有一种更好更快的方法。为了将一列值改为变量,可以简单地将变量名设置为与数组长度相同的数组:

array = [5, 10, 15, 20]
five, ten, fift, twent = array

3. 生成器的next()迭代

在编程中的大多数正常情况下,可以访问一个索引,并使用计数器获取位置数字,计数器将只是一个值,添加到:

array1 = [5, 10, 15, 20]
array2 = (x ** 2 for x in range(10))
counter = 0for i in array1:# This code wouldn't work because 'i' is not in array2.
  # i = array2[i]
   i = array2[counter]
#    ^^^ This code would because we areaccessing the position of i

我们也可以用next()代替它。Next使用一个迭代器,该迭代器将当前位置存储在内存中,并在后台迭代列表:

g = (x ** 2 for x in range(10))
print(next(g))
print(next(g))

4. 智能拆包

迭代地解压值可能会非常耗费时力,Python中有几种不错的方法可以用来解压列表的方法。其中一个是*,它将填充未分配的值并将它们添加到变量名下的新列表中。

a, *b, c = [1, 2, 3, 4, 5]

5. 列举

不了解列举那可不太行。列举可以获取列表中某些值的索引,在数据科学中使用数组而不是数据帧时,这就特别有用:

for i,w in enumerate(array):
   print(i,w)

6. 命名切片

Python中,分割列表非常简单,各式各样优秀工具都能做到。特别好的一点是,它还能够给列表命名,这对于Python中的线性代数特别有用:

a = [0, 1, 2, 3, 4, 5]
LASTTHREE = slice(-3, None)
slice(-3, None, None)
print(a[LASTTHREE])

7. Itertools

如果深入学习Python,那你肯定要熟悉itertools。itertools是标准库中的一个模块,它可以不断地解决迭代问题。它不仅使编写复杂循环大幅度变容易,而且还使代码更简洁快速。有数百种Itertools的使用示例,来看看其中一个:

c = [[1, 2], [3, 4], [5, 6]]
# Let's convert this matrix to a 1 dimensional list.
import itertools as it
newlist = list(it.chain.from_iterable(c))

8. 分组相邻列表

在for循环中,对相邻循环进行分组当然很容易,特别是使用zip(),但这肯定不是最好的方法。为了更轻松便捷地实现这一点,可以用zip编写一个lambda表达式,该表达式将对相邻列表进行分组,如下所示:

a = [1, 2, 3, 4, 5, 6]
group_adjacent = lambda a, k: zip(*([iter(a)] * k))
group_adjacent(a, 3) [(1, 2, 3), (4, 5, 6)]
group_adjacent(a, 2) [(1, 2), (3, 4), (5, 6)]
group_adjacent(a, 1)

9. 计数器

集合也是模块中很好的标准库,这里向大家介绍的是集合中的计数器。使用计数器,可以轻松获得一个列表的计数。这对于获取数据中的值总数、数据的空计数,以及查看数据的唯一值非常有用。

“为什么不直接使用Pandas呢?”使用Pandas来实现这一点无疑会困难得多,而且这只是在部署算法时需要添加到虚拟环境中的另一个依赖项。另外,Python中的计数器类型有很多Pandas系列没有的特性,这使其在某些情况下更有用。

A = collections.Counter([1, 1, 2,2, 3, 3, 3, 3, 4, 5, 6, 7])
A Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
A.most_common(1) [(3, 4)]
A.most_common(3) [(3, 4), (1, 2), (2, 2)]

10. 出队

如下所示,出队能让代码非常整洁:

import collections
Q = collections.deque()
Q.append(1)
Q.appendleft(2)
Q.extend([3, 4])
Q.extendleft([5, 6])
Q.pop()
Q.popleft()
Q.rotate(3)
Q.rotate(-3)
print(Q)

这些是笔者一直爱用的Python技巧,都非常通用和实用,实践中总有机会能用到。Python的标准库函数工具箱变得越来越多样,还有很多笔者也没听说过的工具。学无止境,这多么令人兴奋!

标题名称:Python中经常使用小技巧
文章出自:http://www.mswzjz.cn/qtweb/news37/291937.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能