大数据浪潮下的数据库应用程序(大数据对数据库的应用程序)

随着互联网和技术的飞速发展,大数据已经成为了当今时代的一个重要产物。大数据的产生和使用需要依赖于强大的数据处理和管理能力,而数据库技术又是其中至关重要的一环。在大数据浪潮下,数据库应用程序也面临着巨大的挑战和变革。

一、大数据对数据库应用程序提出的挑战

1. 数据量的增长

大数据意味着数据量巨大,传统的关系型数据库已经不能满足这种数据量的存储和处理需求。因此,NoSQL数据库和分布式数据库逐渐成为了大数据时代的主流选择,它们具有高度可伸缩性和可扩展性,可以实现海量数据的存储和管理。

2. 多样化的数据类型

随着传感器技术、图像处理技术等不断发展,数据类型也变得越来越复杂、多样化。这就要求数据库应用程序具备更强的数据类型适应能力。传统的关系型数据库只支持固定的数据类型,难以应对不同数据类型的需求,而NoSQL数据库和图数据库具有更强的适应能力,能够存储和处理各种类型的数据。

3. 实时性要求

对于一些业务场景,数据的实时性非常重要。此时,关系型数据库的批处理模式已经无法满足实时处理的需求,需要使用实时流式数据处理技术,例如Apache Kafka等流处理引擎,这些工具可以实现大规模数据的高效实时处理。

4. 安全性和保密性

在大数据应用场景中,数据安全风险也越来越高,因此数据库应用程序需要具备更强的安全性和保密性保障能力。例如,引入数据加密、授权和认证等技术,可以保护数据的隐私和安全性。

5. 分布式应用支持

数据库应用程序需要支持分布式应用,涉及到数据的复制、同步和迁移等技术。如何在分布式环境下实现数据的一致性和可靠性,是数据库应用程序要解决的一个重要问题。

二、大数据下的数据库应用程序变革

1. NoSQL数据库

NoSQL数据库是近年来大数据时代的主流选择之一,它们强调的是高度扩展性和更高的性能。相比传统的关系型数据库,NoSQL数据库不是按照表的形式存储数据,而是以键值、文档、图形等形式存储数据。这种方式可以满足数据大规模存储和管理的需求,同时具有更高的性能和更好的伸缩能力。

2. 分布式数据库

分布式数据库是由多个数据库组成的一个系统,它们能够共同承担数据存储和处理的任务。分布式数据库架构可以实现数据的分散存储和并行处理,提高了数据的可靠性和可扩展性,同时也可以提供更高的性能和更快的查询速度。

3. 图数据库

图数据库是特殊类型的数据库,它们是为了存储和处理数据之间复杂的关系而设计的。图数据库可以处理大规模图数据,支持高效的图搜索和关系查询,也能够满足一些非图数据的存储和处理需求。

4. 技术

随着大数据的不断涌现,技术也在逐步的应用于数据库应用程序中。例如,机器学习技术可以帮助数据库应用程序更好地预测用户行为和趋势,提高数据处理和分析的精确度和效率。

5. 安全保障技术

数据库应用程序的安全性和保密性也是大数据时代必须重视的问题。可以使用诸如数据加密、数据隔离以及访问控制等技术,以保护敏感数据不被恶意方访问。

在大数据浪潮下,数据库应用程序面临的挑战非常多,但也给数据库应用程序带来了诸多变革。数据库应用程序的发展要顺应大数据发展的趋势,采用新型的技术和架构,实现大规模数据的存储、管理和分析,为企业和用户提供更加高效和可靠的服务。

相关问题拓展阅读:

  • 数据库的多表大数据查询应如何优化?
  • 如题,想知道面对大数据的情况下,哪些数据库是比较常用的?

数据库的多表大数据查询应如何优化?

数据库的多表大数据查询应如何优化?

1.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0

2.应尽量避免在 where 子句中使用!=或操作符,否则将引擎放弃使用索引而进行全表扫描。优化器简悉将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。

3.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or num=20

可以这样查询:

select id from t where num=10

union all

select id from t where num=20

4.in 和 not in 也要慎用,因为IN会使系统无法使用索引,而只能直接搜索表中的数据。如:

select id from t where num in(1,2,3)

对于连续的数值,能用 beeen 就不要用 in 了:

select id from t where num beeen 1 and 3

5.尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引。

见如下例子:

SELECT * FROM T1 WHERE NAME LIKE ‘%L%’

SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=’L’

SELECT * FROM T1 WHERE NAME LIKE ‘L%’

即使NAME字段建有索引,前两个查询依然无法利用索引完成加快操作,引擎不得不对全表所有数据逐条操作来完成任务。而第三个查询能够使用索引来加快操作。

6.必要时强制查询优化器使用某个索引,如在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未散罩知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num=@num

可以改为强制查询使用索引:

select id from t with(index(索引名)) where num=@num

7.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

SELECT * FROM T1 WHERE F1/2=100

应改为:

SELECT * FROM T1 WHERE F1=100*2

SELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=’5378’

应改为:

SELECT * FROM RECORD WHERE CARD_NO LIKE ‘5378%’

SELECT member_number, first_name, last_name FROM members

WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21

应改为:

SELECT member_number, first_name, last_name FROM members

WHERE dateofbirth =” and createdate0)

SELECT SUM(T1.C1) FROM T1WHERE EXISTS(

SELECT * FROM T2 WHERE T2.C2=T1.C2)

两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁定的表扫描或是索引扫描。

Java怎么把数据库的数据查询

Statement stmt = null;

ResultSet rs = null;

String query = “select 列名 from 表名 where id=11 and fname=’xx’ order by 列名 desc limit 1”;

stmt = conn.createStatement();

rs = stmt.executeQuery(query);

if (rs.next()) {

result = rs.getInt(“列名”);

}

数据库表内数据查询

楼上的 拼写错误,我来修正 ^^

select count(*) from 表名

如何查询大数据库数据存在

传统数据库处理大数据很困难吧,不建议使用传统数据库来处理大数据。

建议研究下,Hadoop,Hive等,可处理大数据。

如果有预算,可以使用一些商业大数据产品,国内的譬如永洪科技的大数据BI产品,不仅能高性能处理大数据,还可做数据分析。

当然如果是简单的查询,传统数据库如果做好索引,可能可以提高性能。

如何实现不同数据库的数据查询分页

有两种方法

方法1:

select 100 * from tbllendlist where fldserialNo not in ( selectfldserialNo from tbllendlist order by fldserialNo ) order by fldserialNo

方法2:

SELECT TOP 100 * FROM tbllendlist WHERE (fldserialNo > (SELECT MAX(fldserialNo) FROM (SELECT TOPfldserialNo FROM tbllendlist ORDER BY fldserialNo) AS T)) ORDER BY fldserialNo

如何提高Oracle数据库数据查询的命中率

影响命中率的因素有四种:字典表活动、临时段活动、回滚段活动、表扫描, 应用DBA可以对这四种因素进行分析,找出数据库命中率低的症结所在。 1)字典表活动 当一个SQL语句之一次到达Oracle内核时数据库对SQL语句进行分析,包含在查询中的数据字典对象被分解,产生SQL执行路径。如果SQL语句指向一个不在SGA中的对象?表或视图,Oracle执行SQL语句到数据典中查询有关对象的信息。数据块从数据字典表被读取到SGA的数据缓存中。由于每个数据字典都很小,因此,我们可缓存这些表以提高对这些表的命中率。但是由于数据字典表的数据块在SGA中占据空间,当增加全部的命中率时,它们会降低表数据块的可用空间, 所以若查询所需的时间字典信息已经在SGA缓存中,那么就没有必要递归调用。 2)临时段的活动 当用户执行一个需要排序的查询时,Oracle设法对内存中排序区内的所有行进行排序,排序区的大小由数据库的init.ora文件的数确定。如果排序区域不够大,数据库就会在排序操作期间开辟临时段。临时段会人为地降低OLTP(online transaction processing)应用命中率,也会降低查询进行排序的性能。如果能在内存中完成全部排序操作,就可以消除向临时段写数据的开销。所以应将SORT_AREA_SIZE设置得足够大,以避免对临时段的需要。这个参数的具体调整方法是:查询相关数据,以确定这个参数的调整。 select * from v$sysstat where name=’sorts(disk)’or name=’sorts(memory); 大部分排序是在内存中进行的,但还有小部分发生在临时段, 需要调整 值,查看init.ora文件的 SORT_AREA_SIZE值,参数为:SORT_AREA_SIZE=65536;将其调整到SORT_AREA_SIZE=131072、这个值调整后,重启ORACLE数据库即可生效。 3)回滚段的活动 回滚段活动分为回滚活动和回滚段头活动。对回滚段头块的访问会降低应用的命中率, 对OLTP系统命中率的影响更大。为确认是否因为回滚段影响了命中率,可以查看监控输出报表中的“数据块相容性读一重写记录应用” 的统计值,这些统计值是用来确定用户从回滚段中访问数据的发生次数。 4)表扫描 通过大扫描读得的块在数据块缓存中不会保持很长时间, 因此表扫描会降低命中率。为了避免不必要的全表扫描,首先是根据需要建立索引,合理的索引设计要建立人对各种查询的分析和预测上,笔者会在SQL优化中详细谈及;其次是将经常用到的表放在内存中,以降低磁盘读写次数。

如何优化数据库提高数据库的效率

1. SQL优化的原则是:将一次操作需要读取的BLOCK数减到更低,即在最短的时间达到更大的数据吞吐量。

调整不良SQL通常可以从以下几点切入:

? 检查不良的SQL,考虑其写法是否还有可优化内容

? 检查子查询 考虑SQL子查询是否可以用简单连接的方式进行重新书写

? 检查优化索引的使用

? 考虑数据库的优化器

2. 避免出现SELECT * FROM table 语句,要明确查出的字段。

3. 在一个SQL语句中,如果一个where条件过滤的数据库记录越多,定位越准确,则该where条件越应该前移。

4. 查询时尽可能使用索引覆盖。即对SELECT的字段建立复合索引,这样查询时只进行索引扫描,不读取数据块。

5. 在判断有无符合条件的记录时建议不要用SELECT COUNT (*)和select 1 语句。

6. 使用内层限定原则,在拼写SQL语句时,将查询条件分解、分类,并尽量在SQL语句的最里层进行限定,以减少数据的处理量。

7. 应绝对避免在order by子句中使用表达式。

8. 如果需要从关联表读数据,关联的表一般不要超过7个。

9. 小心使用 IN 和 OR,需要注意In中的数据量。建议中的数据不超过200个。

10. 用 代替,>用>=代替,1000)。应该用如下语句代替:select name from customer inner join order on customer.customer_id=order.customer_id where order.money>100。

15. 在WHERE 子句中,避免对列的四则运算,特别是where 条件的左边,严禁使用运算与函数对列进行处理。比如有些地方 substring 可以用like代替。

16. 如果在语句中有not in(in)操作,应考虑用not exists(exists)来重写,更好的办法是使用外连接实现。

17. 对一个业务过程的处理,应该使事物的开始与结束之间的时间间隔越短越好,原则上做到数据库的读操作在前面完成,数据库写操作在后面完成,避免交叉。

18. 请小心不要对过多的列使用列函数和order by,group by等,谨慎使用disti软件开发t。

19. 用union all 代替 union,数据库执行union操作,首先先分别执行union两端的查询,将其放在临时表中,然后在对其进行排序,过滤重复的记录。

当已知的业务逻辑决定query A和query B中不会有重复记录时,应该用union all代替union,以提高查询效率。

数据更新的效率

1. 在一个事物中,对同一个表的多个insert语句应该集中在一起执行。

2. 在一个业务过程中,尽量的使insert,update,delete语句在业务结束前执行,以减少死锁的可能性。

数据库物理规划的效率

为了避免I/O的冲突,我们在设计数据库物理规划时应该遵循几条基本的原则(以ORACLE举例):

?? table和index分离:table和index应该分别放在不同的tablespace中。

?? Rollback Segment的分离:Rollback Segment应该放在独立的Tablespace中。

?? System Tablespace的分离:System Tablespace中不允许放置任何用户的object。(mssql中primary filegroup中不允许放置任何用户的object)

?? Temp Tablesace的分离:建立单独的Temp Tablespace,并为每个user指定default Temp Tablespace

??避免碎片:但segment中出现大量的碎片时,会导致读数据时需要访问的block数量的增加。对经常发生DML操作的segemeng来说,碎片是不能完全避免的。所以,我们应该将经常做DML操作的表和很少发生变化的表分离在不同的Tablespace中。

当我们遵循了以上原则后,仍然发现有I/O冲突存在,我们可以用数据分离的方法来解决。

?? 连接Table的分离:在实际应用中经常做连接查询的Table,可以将其分离在不同的Taclespace中,以减少I/O冲突。

?? 使用分区:对数据量很大的Table和Index使用分区,放在不同的Tablespace中。

在实际的物理存储中,建议使用RAID。日志文件应放在单独的磁盘中。

数据库的查询优化算法

给出你的查询,然后才可以对其进行优化

如何优化SQL Server数据库查询

如果你的查询比较固定,并且查询的条件区别度较高,可以建立相应的索引。

其他的一些规则,比如使用exists代替 in都可以试试

查询速度慢的原因很多,常见如下几种:

1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)

2、I/O吞吐量小,形成了瓶颈效应。

3、没有创建计算列导致查询不优化。

4、内存不足

5、网络速度慢

6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)

7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)

8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。

9、返回了不必要的行和列

10、查询语句不好,没有优化

可以通过如下方法来优化查询 :

1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2023不在支持。数据量(尺寸)越大,提高I/O越重要.

2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)

3、升级硬件

4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(更好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段

5、提高网速;

6、扩大服务器的内存,Windows 2023和SQL server 2023能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server? 2023 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 1.5 倍。如果另外安装了全文检索功能,并打算运行 Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。将 SQL Server max server memory 服务器配置选项配置为物理内存的 1.5 倍(虚拟内存大小设置的一半)。

7、增加服务器 CPU个数; 但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定更优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新操作Update,Insert, Delete还不能并行处理。

8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like ‘a%’ 使用索引 like ‘%a’ 不使用索引用 like ‘%a%’ 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。

9、DB Server 和APPLication Server 分离;OLTP和OLAP分离

10、分布式分区视图可用于实现数据库服务器联合体。联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层 Web 站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件’分区视图’)

a、在实现分区视图之前,必须先水平分区表

b、在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上运行。系统操作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。

11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE. 设置自动收缩日志.对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:

1、 查询语句的词法、语法检查

2、 将语句提交给DBMS的查询优化器

3、 优化器做代数优化和存取路径的优化

4、 由预编译模块生成查询规划

5、 然后在合适的时间提交给系统处理执行

6、 最后将执行结果返回给用户其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。

12、Commit和rollback的区别 Rollback:回滚所有的事物。 Commit:提交当前的事物. 没有必要在动态SQL里写事物,如果要写请写在外面如: begin tran exec(@s) mit trans 或者将动态SQL 写成函数或者存储过程。

13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。

14、SQL的注释申明对执行没有任何影响

15、尽可能不使用光标,它占用大量的资源。如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。游标可以按照它所支持的提取选项进行分类: 只进 必须按照从之一行到最后一行的顺序提取行。FETCH NEXT 是唯一允许的提取操作,也是默认方式。可滚动性可以在游标中任何地方随机提取任意行。游标的技术在SQL2023下变得功能很强大,他的目的是支持循环。有四个并发选项 READ_ON:不允许通过游标定位更新(Update),且在组成结果集的行中没有锁。 OPTIMISTIC WITH valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于更大化其处理能力。如果用户试图修改某一行,则此行的当前值会与最后一次提取此行时获取的值进行比较。如果任何值发生改变,则服务器就会知道其他人已更新了此行,并会返回一个错误。如果值是一样的,服务器就执行修改。选择这个并发选项OPTIMISTIC WITH ROW VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具有某种版本标识符,服务器可用它来确定该行在读入游标后是否有所更改。在 SQL Server 中,这个性能由 timestamp 数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。每个数据库都有一个全局当前时间戳值:@@DS。每次以任何方式更改带有 timestamp 列的行时,SQL Server 先在时间戳列中存储当前的 @@DS 值,然后增加 @@DS 的值。如果某 个表具有 timestamp 列,则时间戳会被记到行级。服务器就可以比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而确定该行是否已更新。服务器不必比较所有列的值,只需比较 timestamp 列即可。如果应用程序对没有 timestamp 列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。 SCROLL LOCKS 这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其上放置一个更新锁。如果在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。如果在事务外打开游标,则提取下一行时,锁就被丢弃。因此,每当用户需要完全的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更新该行。然而,更新锁并不阻止共享锁,所以它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的 Select 语句中指定的锁提示,这些游标并发选项可以生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并可以保持到一个提交或回滚操作之后。如果提交时关闭游标的选项为关,则 COMMIT 语句并不关闭任何打开的游标,而且滚动锁被保留到提交之后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标 Select 语句中的锁提示。锁提示 只读 乐观数值 乐观行版本控制 锁定无提示 未锁定 未锁定 未锁定 更新 NOLOCK 未锁定 未锁定未锁定 未锁定 HOLDLOCK 共享 共享 共享 更新 UPDLOCK 错误 更新 更新 更新 TABLOCKX 错误 未锁定 未锁定更新其它 未锁定 未锁定 未锁定 更新 *指定 NOLOCK 提示将使指定了该提示的表在游标内是只读的。

16、用Profiler来跟踪查询,得到查询所需的时间,找出SQL的问题所在; 用索引优化器优化索引

17、注意UNion和UNion all 的区别。UNION all好

18、注意使用DISTINCT,在没有必要时不要用,它同UNION一样会使查询变慢。重复的记录在查询里是没有问题的

19、查询时不要返回不需要的行、列

20、用sp_configure ‘query governor cost limit’或者SET QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。 SET LOCKTIME设置锁的时间

21、用select 100 / 10 Percent 来限制用户返回的行数或者SET ROWCOUNT来限制操作的行

22、在SQL2023以前,一般不要用如下的字句: “IS NULL”, “<>”, “!=”, “!>”, “!<”, “NOT”, “NOT EXISTS”, “NOT IN”, “NOT LIKE”, and “LIKE ‘%500′”,因为他们不走索引全是表扫描。也不要在Where字句中的列名加函数,如Convert,substring等,如果必须用函数的时候,创建计算列再创建索引来替代.还可以变通写法:Where SUBSTRING(firstname,1,1) = ‘m’改为Where firstname like ‘m%’(索引扫描),一定要将函数和列名分开。并且索引不能建得太多和太大。NOT IN会多次扫描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN 来替代,特别是左连接,而Exists比IN更快,最慢的是NOT操作.如果列的值含有空,以前它的索引不起作用,现在2023的优化器能够处理了。相同的是IS NULL,”NOT”, “NOT EXISTS”, “NOT IN”能优化她,而”<>”等还是不能优化,用不到索引。

23、使用Query Analyzer,查看SQL语句的查询计划和评估分析是否是优化的SQL。一般的20%的代码占据了80%的资源,我们优化的重点是这些慢的地方。

24、如果使用了IN或者OR等时发现查询没有走索引,使用显示申明指定索引: Select * FROM PersonMember (INDEX = IX_Title) Where processid IN (‘男’,’女’)

25、将需要查询的结果预先计算好放在表中,查询的时候再Select。这在SQL7.0以前是最重要的手段。例如医院的住院费计算。

26、MIN() 和 MAX()能使用到合适的索引。

27、数据库有一个原则是代码离数据越近越好,所以优先选择Default,依次为Rules,Triggers, Constraint(约束如外健主健CheckUNIQUE……,数据类型的更大长度等等都是约束),Procedure.这样不仅维护工作小,编写程序质量高,并且执行的速度快。

28、如果要插入大的二进制值到Image列,使用存储过程,千万不要用内嵌Insert来插入(不知JAVA是否)。因为这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值.存储过程就没有这些动作: 方法:Create procedure p_insert as insert into table(Fimage) values (@image), 在前台调用这个存储过程传入二进制参数,这样处理速度明显改善

如题,想知道面对大数据的情况下,哪些数据库是比较常用的?

目前市场上主要常用的数据库根据数据库应用类型的不同有时候区别。在关系数据库中,Oracle、MySQL/MariaDB、SQL Server、PostgrcSQL、 DB2等数据库应用较广泛。在时序数据库类型中,InfluxDB、RRDtool、Graphite等数据库也较为常见。其他类型数据库枝者可参考 http://db-engines.com/en/ranking网站排山搭辩名。

在国产数据库领域,亚信科技AntDB数据库在运营商的核心系统上⌄为全国24个省份的10亿多用户提供在线服务,现已广泛应用于通信,交逗缺通,金融,能源,邮政等多个行业。

大数据对数据库的应用程序的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于大数据对数据库的应用程序,大数据浪潮下的数据库应用程序,数据库的多表大数据查询应如何优化?,如题,想知道面对大数据的情况下,哪些数据库是比较常用的?的信息别忘了在本站进行查找喔。

创新互联服务器托管拥有成都T3+级标准机房资源,具备完善的安防设施、三线及BGP网络接入带宽达10T,机柜接入千兆交换机,能够有效保证服务器托管业务安全、可靠、稳定、高效运行;创新互联专注于成都服务器托管租用十余年,得到成都等地区行业客户的一致认可。

当前标题:大数据浪潮下的数据库应用程序(大数据对数据库的应用程序)
本文URL:http://www.mswzjz.cn/qtweb/news36/478986.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能