你希望学习文本挖掘,却发现大多数教程难度跨度很大?或者说你找不到心仪的数据集?
本文将会通过 8 个小贴士帮助你走进文本挖掘之门。
对文本保持好奇
在数据科学世界中,凡事的第一步都是“感到好奇”,文本挖掘也不例外。
就像 StackOverflow 的数据科学家 David Robinson 在他的博客中说的那样,“当我看到一个假设 […] 我就迫不及待地想要用数据验证它”。你也应该像他那样对文本保持好奇心。
David Robinson 看到的假设是:
即使你并不打算真的去验证它,你也应该对自己看到的词云图感到好奇,并且有想要自己动手复现一遍的想法。
如果你还未能感受到文本挖掘的魅力,那就来看看这些最近在媒体上广受关注的文本挖掘应用案例吧,比如 South Park dialogue, film dialogue 等等,你会从中得到启发。
掌握你所需要的知识和技能
当你拥有了好奇心,是时候去学习关于文本挖掘的知识和技能了。你可以通过完成一些教学课程轻松地做到这一步。
在这些教程中你需要格外关注的是数据科学工作流中的基本步骤,比如数据预备和预处理,数据探索,数据分析等等。
推荐阅读:
词语,词语,词语 – 寻找你的数据
一旦你掌握了分析和展现数据所需的基本概念和方法,就可以开始寻找你的数据了!
有非常多途径可以找到你心仪的数据,除了 google trends 和雅虎,你还可以从以下途径获取数据:
如你所见,文本来源有无限可能。任何包含文本的东西都可以成为你的文本挖掘案例学习的主题。
寻找合适的工具
现在你已经找到了你的数据的来源,你可能需要使用合适的工具来对他们进行处理。你已经学习的教学课程应该已经为你提供了许多入门工具。
但是,如果你仅仅学习了教学课程,你可能错过了一些东西,比如下文会介绍的用 R 进行文本挖掘时会用到的包:
对于Python,你可以使用以下库:
充分的准备是成功的一半——数据预处理
数据科学家工作中 80% 的时间用在数据清洗上,文本挖掘也不例外。
如果你不确定要怎么预处理,以下是一些标准流程中的步骤:
这些步骤看起来很难,实际上你不用每一步都自己实现。大多数情况下,上文中提到的库和包都能帮你实现这些步骤。比如 R 中的 tm 包可以让你通过其内置函数完成词干化、去除停止词、消除空白以及小写转换。类似的,Python 中的 nltk 库也可以通过其内置函数完成这些预处理过程。
然而,你可能仍然需要进一步使用正则表达式来描述你需要的文本模式,以便进一步预处理。这也可以加速你的数据清理过程。
对于 Python, 你可以使用 re 库,而在 R 中,有许多内置函数,如 grep(), grepl(), regexpr(), gregexpr(), sub(), gsub() 和 strsplit()。
如果你想要更加深入地了解这些函数,或者 R 中的正则表达式,你可以查看这个正则表达式介绍网页。
数据科学家的仙境冒险——数据探索
到目前为止,你已经摩拳擦掌准备开始分析了。但是,在分析之前最好还是先看看数据长什么样子。
利用上文提到的那些包和库,你可以快速地进行一些数据探索工作:
经过数据探索过程,你会对你接下来分析中,要分析的对象有一定的了解。如果你看到文档词汇矩阵或者直方图中有很多词语是稀疏的,你可以考虑将他们去掉。
提升你的文本挖掘技能
当你使用上述工具完成了预处理和基本的文本分析等步骤,你可以考虑通过你的数据集,进一步扩展你的文本挖掘技能。因为到现在,你看到的技巧提示都只是文本挖掘的冰山一角。
首先,你应该考虑探索文本挖掘和自然语言处理(NLP)的区别。更多关于 NLP 的 R 包可以在这个 NLP 的 R 包网页找到。NLP 中,你会学习到命名实体识别、词性标注、篇章分析、情感分析等内容。对于 Python, 你可以使用 nltk 库。这个使用 nltk 库进行情感分析完全指南会对你有所帮助。
除了这些包,还有诸如深度学习、统计主题发现模型(如隐式狄利克雷分配,LDA)等工具等着你去学习。这些算法对应的包有:
不止是词语——结果可视化
可视化是一种非常吸引人的表达方式,所以将结果可视化可能是你能做的最美妙的事情!注意,你要可视化的是你要讲的故事,而不是将你分析中发现的关联性或者话题可视化。
Python 和 R 中都有许多可视化包:
对于 Python, 你可以考虑使用 NetworkX 库来可视化复杂网络,matplotlib 包可以用来解决其他可视化问题。此外,plotly 包让你可以发布可交互在线图表。试着将 Python 和 D3 联系起来会得到更好的效果。D3 是一个用于动态数据操纵和可视化的 JavaScript 库,可以让你的读者和听众参与到数据可视化的过程中来。
对于 R, 除了 ggplot2 等大家耳熟能详的包,你也可以使用 igraph 包来分析关注、被关注以及转发微博等关系。此外,plotly 和 networkD3 包可以把 R 和 JavaScript 链接起来,LDAvis 包则可以将主题模型进行可交互的可视化。
当前标题:R和Python中的文本挖掘:8个入门小贴士
文章起源:http://www.mswzjz.cn/qtweb/news36/423486.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能