Kubernetes安全之认证与授权

背景

随着云计算和微服务架构的普及,容器技术已经成为了企业和开发者构建、部署和管理应用程序的首选方案。Kubernetes作为一个开源的容器编排平台,已经成为了容器化应用程序的事实标准。然而,随着Kubernetes在生产环境中的广泛应用,安全问题也日益凸显,这些安全事件给企业和开发者带来了巨大的损失,也使得Kubernetes安全成为了业界关注的焦点。本文将探讨Kubernetes安全中的认证和授权,为相关研究和实践提供参考。

Kubernetes介绍

Kubernetes是一款开源的容器编排系统,能够自动化地部署、扩展和管理容器化的应用程序。它最初由Google设计和开发,现在由Cloud Native Computing Foundation (CNCF)维护。

Kubernetes最初由Google设计和开发。Google内部的Borg系统启发了Kubernetes的设计,并帮助Google处理了数百万个容器实例的管理。Kubernetes项目于2014年6月正式发布,当时的版本为v0.1。自那以后,Kubernetes不断发展壮大,成为了一个成熟的、开源的容器编排系统,广泛应用于企业的生产环境中。现在,Kubernetes由Cloud Native Computing Foundation (CNCF)维护,成为了CNCF的毕业项目之一。

Kubernetes的目标和优势

Kubernetes的目标是帮助企业更好地管理和协调容器化的应用程序。通过使用Kubernetes,运维人员和开发人员可以更快速、更可靠地部署和运行容器化的应用程序。它提供了一系列的API和工具,可以自动化地处理容器的部署、扩展、负载均衡、网络、存储和安全等方面的问题。同时,Kubernetes可以支持多种容器运行时,如Docker、rkt等。

Kubernetes的优势包括:

  • 自动化:Kubernetes可以自动进行容器的部署、扩展、负载均衡、网络、存储和安全等方面的管理,从而减轻了运维人员的工作量。
  • 可伸缩性:Kubernetes可以轻松地扩展应用程序的规模和资源,从而满足不同的业务需求。
  • 可靠性:Kubernetes可以自动化地处理容器的故障恢复和负载均衡,从而保证应用程序的高可用性。
  • 安全性:Kubernetes提供了多种安全措施,如身份验证、授权、加密和网络隔离等,从而保护容器化应用程序和数据的安全。
  • 灵活性:Kubernetes支持多种云平台和部署环境,如公有云、私有云和混合云等,从而满足不同的业务需求。

Kubernetes相关概念

node介绍

在Kubernetes集群中,node是一个关键概念,它为运行容器和部署应用程序提供必需的资源和环境。通过使用node,能够更加高效地管理集群内的容器化应用程序。node可以部署在同一台物理机器上,也可以部署在不同的物理机器上,实现高可用性和负载均衡。

Kubernetes的整体架构由Master节点和Worker节点组成。Master节点作为集群的控制中心,负责管理整个集群的状态,以及应用程序的部署、伸缩、升级和运维等任务。而Worker节点则承担着运行应用程序的职责,负责运行容器并提供应用程序服务。

在Kubernetes集群中,Master节点主要包括以下几个组件:

  • API Server:提供Kubernetes集群API,涵盖容器的创建、伸缩、升级、删除等操作。
  • etcd:负责Kubernetes集群数据存储,包括集群状态、应用程序配置和服务发现等。
  • Controller Manager:管理集群内的控制器,如Replication Controller、Deployment Controller和Namespace Controller等。
  • Scheduler:为新的Pod选择合适的Worker节点以进行运行。

在Kubernetes集群中,Master节点的API Server、etcd、Controller Manager和Scheduler四个组件相互协作,共同维护和管理集群的状态。API Server作为集群的前端,负责处理用户请求和与其他组件通信;etcd负责存储集群的状态信息;Controller Manager负责管理控制器,确保集群的实际状态与期望状态一致;Scheduler负责为新创建的Pod选择合适的节点进行部署。这四个组件共同构成了Kubernetes集群的核心架构。

而Worker节点则包括以下组件:

  • kubelet:管理节点上的容器,包括容器的创建、删除、伸缩等操作。
  • kube-proxy:管理节点上的网络,包括为Pod分配IP地址、实现网络转发等。
  • Container Runtime:负责运行容器的软件,例如Docker、rkt等。

Kubelet、kube-proxy和Container Runtime是Worker节点上的三个关键组件。Kubelet负责与Master节点通信并管理容器的生命周期,kube-proxy负责实现服务发现和负载均衡,而Container Runtime则负责实际运行容器。这三者共同协作,确保Kubernetes集群中的容器化应用能够高效、稳定地运行。

Master节点与Worker节点之间的通信至关重要,它使得Kubernetes集群中的各个组件能够协同工作。在Kubernetes架构中,Master节点和Worker节点可以部署在同一台物理机器上,也可以部署在不同的物理机器上,以实现高可用性和负载均衡。

Kubernetes还包含一些其他组件,如Ingress Controller和Service Mesh等,它们为Kubernetes集群提供更高级的功能和服务。

pod介绍

Pod是Kubernetes核心概念之一,提供容器间通信、数据共享和资源隔离机制。当需要运行容器时,Kubernetes调度器创建Pod,分配给可用的Worker节点。在该节点上,kubelet运行Pod中的容器,kube-proxy确保Pod访问正确的服务和资源。

Pod旨在支持多个容器协同工作,如一个Web应用可能需Nginx容器处理网络请求,node.js容器处理应用逻辑。两个容器组成一个Pod,共享网络和存储资源。Pod内容器共享网络命名空间和存储卷,轻松相互通信和共享数据。每个容器在Pod中运行独立应用程序或服务,拥有独立生命周期。

Pod是临时、短暂存在的实体。容器故障或需升级时,删除Pod,创建新Pod替代。Kubernetes确保新Pod中的容器保留旧Pod数据和状态,确保应用程序高可用性和灵活性,满足企业需求。

namespace介绍

在Kubernetes中,Namespace是一种虚拟的集群划分方式,用于将一个物理集群划分为多个逻辑集群。每个Namespace都具有自己的资源限制和授权策略,可以用来隔离不同的应用程序或用户。通过使用Namespace,企业可以更好地管理Kubernetes集群中的应用程序和资源。例如,可以为不同的团队或部门分配不同的Namespace,实现资源隔离和授权控制。

Kubernetes默认提供三个Namespace:default、kube-system和kube-public。default Namespace用于存放应用程序的默认资源,kube-system Namespace用于存放Kubernetes系统的资源,kube-public Namespace用于存放公共资源。除此之外,用户还可以创建自己的Namespace,用于存放特定的应用程序和资源。

Namespace中可以创建各种Kubernetes资源,如Pod、Service、Volume等。这些资源只能在同一Namespace中使用,不能跨Namespace使用。例如,一个Pod只能访问同一Namespace中的其他Pod和Service,不能访问其他Namespace中的资源。这样可以确保资源的隔离和安全性。

Namespace和Node

Node和Namespace是相互独立的概念,它们在Kubernetes集群中扮演着不同的角色。Node关注的是集群的物理层面,如服务器、网络等,而Namespace关注的是集群的逻辑层面,如资源隔离、权限控制等。Node和Namespace之间没有直接的关联关系。一个Node可以运行属于不同Namespace的Pods,而一个Namespace中的资源可以分布在多个Node上。换句话说,Namespace的划分不受Node的限制,它们可以跨越整个集群。

尽管Node和Namespace之间没有直接关联,但它们在Kubernetes集群中共同协作,共同支持容器化应用程序的运行。例如,当在某个Namespace中创建一个新的Deployment时,Kubernetes会根据集群的资源情况,自动选择合适的Node来运行相应的Pods。

总之,Node和Namespace在Kubernetes中是两个独立但互相协作的概念。Node负责提供集群的计算、存储和网络资源,而Namespace负责在逻辑层面上对集群资源进行划分和管理。它们共同构成了Kubernetes集群的基础架构,支持容器化应用程序的高效运行。

Kubernetes namespace和linux内核 namespace

Kubernetes命名空间与Linux操作系统命名空间在概念上具有相似性,但在实际应用中所扮演的角色有所不同。Kubernetes命名空间主要关注集群内资源和对象的逻辑隔离,而Linux操作系统命名空间则关注在内核级别实现资源隔离。可以将这两者视为在不同层次上实现资源隔离的技术。

Kubernetes中的Pod与Linux操作系统命名空间之间存在联系,主要体现在Pod的底层实现。在Kubernetes中,Pod的创建和管理依赖于容器技术,如Docker或rkt。这些容器技术利用Linux操作系统命名空间为每个容器提供隔离环境。当Kubernetes调度并运行一个Pod时,底层容器运行时会使用Linux命名空间为Pod中的容器创建一个独立的运行环境。

service介绍

在Kubernetes中,Service是一种抽象的资源,用于公开应用程序中的一组Pod,并为它们提供网络连接。Service将多个Pod公开为单个逻辑应用程序,并为它们提供一个稳定的IP地址和端口,使它们在整个集群中可访问。

Service通过一组标签选择器来选择要公开的Pod。Pod的标签可以用来标识应用程序的不同组件,例如前端、后端、数据库等。Service将选择器与标签匹配,并将流量路由到匹配的Pod。

在Kubernetes中,Service主要有两种类型:ClusterIP和NodePort。

ClusterIP Service是默认类型的Service,它将Pod暴露到集群内部,为每个Service分配一个稳定的虚拟IP地址,可以在集群内部用于Pod之间的通信。

NodePort Service将Pod公开到集群外部,并为它们提供一个稳定的IP地址和端口,可以从集群外部访问这些Pod。NodePort Service使用了集群节点的IP地址和端口号,并将流量转发到匹配的Pod。此外,还有两种类型的Service:LoadBalancer和ExternalName。LoadBalancer Service用于将流量负载均衡到集群中的多个节点,而ExternalName Service则将Service映射到集群外部的DNS名称。

Service是Kubernetes中一个重要的概念,它为Pod提供了一个稳定的网络标识符,使得开发人员和操作人员可以更轻松地管理和公开容器化应用程序。通过使用Service,可以在不影响应用程序的情况下轻松地扩展、升级和部署容器化应用程序。

不同概念之间的关系

  • Kubernetes 集群由多个 Node 节点组成;
  • 每个 Node 节点上可以运行多个 Pod;
  • 每个 Pod 可以包含一个或多个容器,这些容器共享存储卷和网络命名空间;
  • Namespace 用于在逻辑上对集群资源进行划分和隔离;
  • Service 用于将一组具有相同功能的 Pod 暴露为一个单一的访问接口,实现负载均衡和服务发现。

Kubernetes安全模型

Kubernetes 的安全模型由三个关键组件组成:认证、授权和 Admission Control。

  1. 认证(Authentication): 认证是验证用户或进程的身份的过程。Kubernetes 支持多种认证方式,包括基于证书、令牌、用户名/密码等。当用户或进程尝试访问 Kubernetes API 服务器时,Kubernetes 将验证其身份并授予相应的访问权限。
  2. 授权(Authorization): 授权是确定用户或进程是否被允许访问资源的过程。在 Kubernetes 中,授权采用基于角色的访问控制(RBAC)模型。管理员可以创建角色和角色绑定,以控制哪些用户或进程可以访问哪些资源,并指定其可执行的操作。
  3. Admission Control: Admission Control 是 Kubernetes 中的一个安全机制,允许管理员在运行时拦截请求,对其进行修改或拒绝。Admission Control 通常用于实现各种策略,如自动扩展、网络隔离和资源限制等。

以下是三个 Admission Control 的例子:

Pod Security Policy:Pod Security Policy 是一种 Admission Control,可限制在 Kubernetes 中运行的容器。管理员可以创建 Pod Security Policy 来指定容器的运行限制,如禁用特定的 Linux 功能、系统调用、特定卷或容器镜像等。Pod Security Policy 能帮助保护 Kubernetes 集群内的应用程序和数据安全,防止恶意容器攻击。

MutatingAdmissionWebhook:MutatingAdmissionWebhook 是一种 Admission Control,可在 Pod 创建时自动修改其配置。例如,管理员可使用 MutatingAdmissionWebhook 自动为 Pod 注入环境变量、Sidecar 容器或配置 Liveness 和 Readiness 探针。这有助于自动化配置管理,减少手动干预。

ValidatingAdmissionWebhook:ValidatingAdmissionWebhook 是一种 Admission Control,用于验证部署的 Pod 是否符合预定义策略。例如,管理员可使用它验证容器镜像是否安全、无漏洞或已获官方认证。ValidatingAdmissionWebhook 可帮助防止不安全的容器部署,保护集群内应用程序和数据的安全。

Kubernetes 的认证、授权和 Admission Control 按上述顺序执行。首先进行认证,然后进行授权,最后执行 Admission Control。这种顺序确保只有经过认证的用户或进程才能被授权访问资源,并在访问资源之前执行必要的安全和配置检查,以确保 Kubernetes 集群中的应用程序和数据的安全性。

管理员可以根据需求,使用不同的 Admission Control 满足安全和配置管理需求。Kubernetes 的认证、授权和 Admission Control

Kubernetes 认证

在 Kubernetes 中,支持多种不同的认证方式。以下是 Kubernetes 中常用的认证方式:

  1. TLS 证书认证: TLS 证书认证是 Kubernetes 中最常用的认证方式之一。该认证方式使用 SSL/TLS 证书作为认证标识,用于验证用户或进程的身份,并授予其一组访问权限。TLS 证书认证通常使用 CA 证书、客户端证书和服务器证书,用于验证客户端和服务器之间的安全通信。
  2. Token 认证: Token 认证是 Kubernetes 中一种轻量级的认证方式,可用于对用户进行身份验证。Token 认证使用预定义的 token 来代表用户身份,用户需要在请求中提供有效的 token 才能被认证和授权。Token 认证通常用于在 Kubernetes 中使用 kubectl 进行命令行操作。
  3. 基于 HTTP 的认证: 基于 HTTP 的认证是 Kubernetes 中一种常用的认证方式,用于对用户进行身份验证。该认证方式使用用户名和密码来验证用户的身份,并授权访问 Kubernetes 集群中的资源。基于 HTTP 的认证通常使用 OAuth2 或 OpenID Connect 协议来实现。
  4. Webhook 认证: Webhook 认证是 Kubernetes 中一种灵活的认证方式,可用于对用户进行身份验证。该认证方式使用外部认证服务器(如 LDAP 或 Active Directory)来验证用户的身份,并授权访问 Kubernetes 集群中的资源。Webhook 认证通常通过自定义认证模块来实现。
  5. Bootstrap Token 认证: Bootstrap Token 认证是 Kubernetes 中一种预定义的认证方式,可用于对新节点进行身份验证。该认证方式使用预定义的 bootstrap token 来代表新节点的身份,并授权其加入 Kubernetes 集群。Bootstrap Token 认证通常用于启动新节点的自动注册和加入集群。

Kubernetes 中有多种不同的认证方式可供选择,管理员可以根据实际需求和安全要求选择最合适的认证方式。这些认证方式可以确保 Kubernetes 集群中的应用程序和数据的安全性,并保护其免受未经授权的访问和攻击。

Kubernetes 证书认证

Kubernetes 证书认证通常用于验证用户或进程的身份,以及授权其访问 Kubernetes 集群中的资源,其在api server通讯中起到至关重要的作用。以下是 Kubernetes 证书认证的主要使用场景:

  1. 安全通信: Kubernetes 证书认证可用于保护 Kubernetes 集群中的通信安全。通过 SSL/TLS 证书进行认证,可以验证通信双方的身份,并确保通信内容不被篡改或窃取。
  2. 认证用户身份: Kubernetes 证书认证可用于验证用户的身份,以及授予其访问 Kubernetes 集群中的资源的权限。通过基于证书的认证方式,可以确保用户身份的安全和可靠性,避免未经授权的用户访问 Kubernetes 集群中的敏感数据。
  3. 验证 Kubernetes 组件: Kubernetes 证书认证可用于验证 Kubernetes 集群中的各个组件和服务的身份,并授权其访问 Kubernetes API。通过 SSL/TLS 证书进行认证,可以防止未经授权的进程或服务访问 Kubernetes API,确保 Kubernetes 集群的安全和稳定。
  4. 管理集群证书: Kubernetes 证书认证可用于管理 Kubernetes 集群中的 SSL/TLS 证书。通过使用 Cluster CA,可以集中管理 Kubernetes 集群中所有组件和服务的证书签名和验证,保证证书管理的安全性和可靠性。
  5. 保护敏感数据: Kubernetes 证书认证可用于保护 Kubernetes 集群中的敏感数据,例如密码、证书和私钥等。通过 SSL/TLS 证书进行认证,可以防止未经授权的用户或进程访问敏感数据,并确保数据的安全性和机密性。

总之,Kubernetes 证书认证具有广泛的应用场景,可以确保 Kubernetes 集群中各个组件和服务的安全通信,并保护敏感数据免受未经授权的访问和攻击。在实际应用中,管理员可以根据需求选择合适的认证方式,以保障集群的安全性和稳定性。

Cluster CA组件

在 Kubernetes 中,Cluster CA 是指用于签发和验证 Kubernetes 集群中 SSL/TLS 证书的根证书颁发机构(CA)。Cluster CA 负责为 Kubernetes 集群中的各个组件和服务签发证书,并验证其身份和合法性。所有 Kubernetes 组件和服务使用由 Cluster CA 签发的证书进行身份验证和授权,确保 Kubernetes 集群中的安全通信。

在 Kubernetes 中,管理员通常使用以下步骤来生成和管理 Cluster CA:

  1. 生成 CA 的私钥和公钥。
  2. 使用 CA 私钥和公钥生成和签发 Kubernetes 集群中各个组件和服务的 SSL/TLS 证书。
  3. 将 CA 的公钥(cluster-ca.crt)安装到 Kubernetes 集群中的所有组件和服务中,以确保所有通信都由 Cluster CA 签发的证书进行身份验证和加密。

通过 Cluster CA 签发的证书具有以下优点:

  1. 安全可靠:由 Cluster CA 签发的证书具有安全可靠的特性,可以防止未经授权的用户或进程访问 Kubernetes 集群中的资源。
  2. 易于管理:由 Cluster CA 签发的证书具有易于管理的特性,可以通过 CA 中心集中管理证书签名和验证。
  3. 可扩展性:Cluster CA 可以扩展到多个 Kubernetes 集群,以支持跨 Kubernetes 集群的安全通信。

Kubernetes支持多种认证方式,其中之一是基于证书的认证。证书认证使用 SSL/TLS 证书作为认证标识,用于验证用户或进程的身份,并授予其一组访问权限。

在 Kubernetes 中,证书认证通常使用以下三种 SSL/TLS 证书:

  1. CA 证书:CA 证书是 Kubernetes 集群中的根证书,用于签发其他证书。只要验证证书链中的 CA 证书,就可以信任与之相关的所有证书。
  2. 客户端证书:客户端证书是用户或进程的证书,用于验证其身份。客户端证书通常由 CA 证书签发,并包含与用户或进程相关的信息,例如用户名、组名等。
  3. 服务器证书:服务器证书是 Kubernetes API 服务器的证书,用于验证其身份。服务器证书通常由 CA 证书签署,并包含与 API 服务器相关的信息,例如主机名、IP 地址等。

在 Kubernetes 中,证书认证的工作流程如下:

  • 用户或进程通过 SSL/TLS 客户端证书向 Kubernetes API 服务器发送请求。
  • Kubernetes API 服务器使用 CA 证书验证客户端证书的有效性,并确认用户或进程的身份。
  • Kubernetes API 服务器使用 RBAC 模型验证用户或进程是否被授予访问资源的权限,并授权访问。

证书认证是 Kubernetes 中一种常用的认证方式,可以用于验证用户或进程的身份,并授权其访问 Kubernetes 集群中的资源。证书认证具有安全可靠、易于管理的优点,并广泛用于 Kubernetes 中的生产环境。

Kubernetes证书认证配置案例

Kubernetes使用客户端证书进行身份验证,提供一种安全的方法来管理集群访问。以下是有关Kubernetes证书认证的具体流程的概述,包括如何创建证书,如何对证书进行授权,以及如何为kubectl配置证书等。

1、创建证书:需要创建一个私钥和证书签名请求(CSR)。您可以使用OpenSSL工具来完成这些任务。例如,为用户创建私钥:

openssl genrsa -out my-user.key 2048

然后,使用私钥创建CSR:

openssl req -new -key my-user.key -out my-user.csr -subj "/CN=my-user/O=my-group"

其中,CN(Common Name)表示用户名,O(Organization)表示用户所属的组。

2、对证书进行授权:需要将证书签名请求发送给Kubernetes API服务器,让其签署并生成客户端证书。为此,请创建一个CertificateSigningRequest资源,其中包含刚刚创建的CSR文件的内容:

apiVersion: certificates.k8s.io/v1
kind: CertificateSigningRequest
metadata:
name: my-user
spec:
groups:
- system:authenticated
request: 
signerName: kubernetes.io/kube-apiserver-client
usages:
- client auth

使用kubectl创建资源:

kubectl apply -f my-user-csr.yaml

一旦资源被创建,集群管理员需要批准它:

kubectl certificate approve my-user

审批后,您可以从CertificateSigningRequest资源中获取签名后的证书:

kubectl get csr my-user -o jsnotallow='{.status.certificate}' | base64 --decode > my-user.crt

3、为kubectl配置证书: 现在您有了私钥和客户端证书,需要将它们添加到kubectl的配置中。首先,将新用户添加到kubeconfig文件:

kubectl config set-credentials my-user --client-key=my-user.key --client-certificate=my-user.crt --embed-certs=true

接下来,创建一个新的上下文,该上下文将使用新的用户凭据:

kubectl config set-context my-user-context --cluster= --namespace= --user=my-user

最后,切换到新创建的上下文:

kubectl config use-context my-user-context

完成以上步骤后,就可以使用新创建的证书和上下文来访问Kubernetes集群了。请注意,根据集群的角色绑定和角色定义,新用户可能需要进一步授权才能执行某些操作。

证书认证配置相关漏洞

尽管Kubernetes具有强大的功能和广泛的应用,但它也存在一些与证书认证相关的安全漏洞。以下是一些常见的Kubernetes证书认证漏洞:

  1. 证书过期:Kubernetes集群中的证书可能会过期,导致服务不可用或出现认证错误。如果证书未及时更新,攻击者可能会利用过期证书进行中间人攻击,截获和篡改集群内的通信。
  2. 使用自签名证书:在Kubernetes集群中使用自签名证书可能会导致安全风险。自签名证书没有经过权威证书颁发机构(CA)的验证,因此可能容易受到中间人攻击。为了确保安全,建议使用由可信CA颁发的证书。
  3. 证书权限过大:Kubernetes API服务器使用的证书可能具有过多的权限,例如颁发给所有组件的通配符证书。这可能导致攻击者伪装成合法组件,进而窃取或篡改集群中的数据。为了降低风险,建议为每个组件颁发具有最小权限的证书。
  4. 证书泄露:Kubernetes集群中的证书和密钥可能会泄露,例如通过错误配置的存储或公开的GitHub仓库。攻击者可以利用泄露的证书和密钥访问集群中的资源。为了防止证书泄露,建议使用密钥管理系统存储证书,并确保只有授权用户才能访问。
  5. 未加密的通信:Kubernetes集群中的组件之间可能使用未加密的通信,这可能导致敏感数据泄露或遭受中间人攻击。为了确保通信安全,建议使用TLS加密所有组件之间的通信。
  6. 身份验证和授权配置不当:Kubernetes集群中的身份验证和授权策略可能配置不当,导致未经授权的用户访问敏感资源。为了防止未经授权的访问,建议使用Role-Based Access Control(RBAC)策略限制用户和组件的权限,并定期审查权限设置。
  7. API Server未授权访问:Kubernetes API 服务器是集群中的主要组件,负责处理和协调所有操作。如果API服务器未正确配置身份验证和授权策略,攻击者可能会利用这一漏洞访问和操作集群资源。

其他未授权漏洞

  1. etcd 未授权访问:etcd 是 Kubernetes 集群中用于存储配置数据的分布式键值存储系统。如果 etcd 未正确配置访问控制,攻击者可能会访问敏感数据,甚至修改集群配置。
  2. Kubelet 未授权访问:Kubelet 是 Kubernetes 集群中每个节点上运行的代理,负责确保容器在 Pod 中正常运行。如果 Kubelet API 未正确配置访问控制,攻击者可能会访问节点上的容器和 Pod 信息,甚至执行恶意操作。
  3. Kubernetes Dashboard 未授权访问:Kubernetes Dashboard 是一个用于管理和监控集群的 Web UI。如果 Dashboard 未正确配置身份验证和授权策略,攻击者可能会访问敏感信息并操作集群资源。
  4. Helm Tiller 未授权访问:Helm 是 Kubernetes 的一个包管理器,用于部署和管理应用程序。Tiller 是 Helm 的服务器端组件,如果 Tiller 未正确配置访问控制,攻击者可能会部署恶意应用程序或修改现有应用程序。
  5. Docker API未授权访问:造成该漏洞的原因主要是Docker守护进程的配置不当。默认情况下,Docker守护进程只允许本地访问,但如果将其配置为监听远程地址,或者未正确配置访问控制,那么攻击者就可能在未经授权的情况下访问Docker API。

Kubernetes授权

Kubernetes授权机制决定了用户可以在集群中执行哪些操作。Kubernetes提供了几种内置的授权模块,例如Node、ABAC(Attribute-Based Access Control,基于属性的访问控制)和RBAC(Role-Based Access Control,基于角色的访问控制)。在生产环境中,RBAC是最常用的授权机制。

Kubernetes授权核心概念

以下是Kubernetes中与授权机制相关的一些核心概念:

ClusterRole

ClusterRole是一种集群范围的角色,定义了一组对Kubernetes API资源的操作权限。例如:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: pod-reader
rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "watch", "list"]

上述示例中的ClusterRole具有在整个集群范围内读取Pod资源的权限。

ClusterRoleBinding

ClusterRoleBinding是将ClusterRole绑定到用户、组或ServiceAccount的资源,授予它们相应的操作权限。例如:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: pod-reader-binding
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: pod-reader
subjects:
- kind: User
name: my-user
apiGroup: rbac.authorization.k8s.io

上述示例中的ClusterRoleBinding将pod-reader角色绑定到名为my-user的用户。

Role

Role与ClusterRole类似,但它是命名空间范围的角色,只适用于特定命名空间。例如:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: pod-reader
namespace: my-namespace
rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "watch", "list"]

上述示例中的Role具有在my-namespace命名空间内读取Pod资源的权限。

RoleBinding

RoleBinding将Role绑定到用户、组或ServiceAccount,与ClusterRoleBinding类似,但它只在特定命名空间中有效。例如:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: pod-reader-binding
namespace: my-namespace
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: pod-reader
subjects:
- kind: User
name: my-user
apiGroup: rbac.authorization.k8s.io

上述示例中的RoleBinding将pod-reader角色绑定到名为my-user的用户,但仅在my-namespace命名空间中。

ServiceAccount

ServiceAccount是Kubernetes中的特殊用户账户,通常用于运行集群内的Pod、服务和控制器。ServiceAccount不需要外部身份提供者,因为它们直接由Kubernetes API管理。默认情况下,每个命名空间都有一个名为"default"的ServiceAccount。您可以创建额外的ServiceAccount以满足特定需求。例如:

apiVersion: v1
kind: ServiceAccount
metadata:
name: my-serviceaccount
namespace: my-namespace

上述示例创建了一个名为my-serviceaccount的ServiceAccount。

ServiceAccount Token

ServiceAccount Token是一种身份验证令牌,与特定ServiceAccount关联。Kubernetes API服务器会自动生成这些令牌,并将其存储在与ServiceAccount关联的Secret中。使用ServiceAccount Token,您可以以编程方式访问Kubernetes API,而无需为机器人或CI/CD系统创建独立的用户凭据。

要在RBAC中为用户进行授权,可以遵循以下步骤:

  1. 根据需要创建Role(命名空间范围)或ClusterRole(集群范围)以定义对Kubernetes API资源的访问权限。
  2. 创建RoleBinding(命名空间范围)或ClusterRoleBinding(集群范围)以将Role或ClusterRole绑定到用户、组或ServiceAccount。这将为绑定的实体授予相应的权限。
  3. 对于需要通过kubectl访问集群的用户,配置kubectl上下文以使用相应的用户凭据(证书或令牌)。
  4. 确保应用程序或服务使用正确的ServiceAccount运行,以便它们具有适当的访问权限。

通过以上步骤,您可以根据需要为Kubernetes集群中的用户、组和ServiceAccount设置访问权限。请注意,始终遵循最小权限原则,只授予所需的最小权限以降低潜在的安全风险。

RBAC授权配置案例

假设您要授权一个名为dev-user的用户在dev-namespace命名空间中读取和修改Pod资源。以下是使用RBAC为此用户进行授权的具体案例:

  1. 创建一个名为dev-pod-manager的Role,允许在dev-namespace中读取和修改Pod资源:
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: dev-pod-manager
namespace: dev-namespace
rules:
- apiGroups: [""]
resources: ["pods"]
verbs: ["get", "watch", "list", "create", "update", "delete"]

将此YAML保存为**`dev-pod-manager-role.yaml`**,然后使用**`kubectl`**创建Role:
kubectl apply -f dev-pod-manager-role.yaml
  1. 创建一个名为dev-user-binding的RoleBinding,将dev-pod-manager角色绑定到dev-user:
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: dev-user-binding
namespace: dev-namespace
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: dev-pod-manager
subjects:
- kind: User
name: dev-user
apiGroup: rbac.authorization.k8s.io

将此YAML保存为**`dev-user-binding.yaml`**,然后使用**`kubectl`**创建RoleBinding:
kubectl apply -f dev-user-binding.yaml
  1. 现在,为了让dev-user通过kubectl访问集群,您需要配置kubectl上下文。假设您已经为dev-user创建了客户端证书(如前述证书认证示例),您需要将新用户添加到kubeconfig文件:
kubectl config set-credentials dev-user --client-key=dev-user.key --client-certificate=dev-user.crt --embed-certs=true

接下来,创建一个新的上下文,该上下文将使用新的用户凭据:
kubectl config set-context dev-user-context --cluster= --namespace=dev-namespace --user=dev-user

最后,切换到新创建的上下文:
kubectl config use-context dev-user-context

现在,dev-user已经具备在dev-namespace命名空间中读取和修改Pod资源的权限。这个案例展示了如何使用RBAC和kubectl配置为用户授权。当然,您可以根据实际需求调整角色权限和绑定的实体。

RBAC配置不当导致漏洞案例

假设您要授权一个名为dev-user的用户在dev-namespace命名空间中读取Pod资源,但不小心将其授权为集群管理员,这可能导致潜在的安全风险和滥用权限。以下是这个错误授权的具体案例:

  1. 您本意是为dev-user创建一个仅允许读取Pod资源的ClusterRole,但错误地创建了一个具有完全管理权限的ClusterRole:
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: accidental-cluster-admin
rules:
- apiGroups: ["*"]
resources: ["*"]
verbs: ["*"]

将此YAML保存为**`accidental-cluster-admin-role.yaml`**,然后使用**`kubectl`**创建ClusterRole:
kubectl apply -f accidental-cluster-admin-role.yaml
  1. 创建一个名为dev-user-binding的ClusterRoleBinding,将accidental-cluster-admin角色绑定到dev-user:
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: dev-user-binding
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: accidental-cluster-admin
subjects:
- kind: User
name: dev-user
apiGroup: rbac.authorization.k8s.io

将此YAML保存为**`dev-user-binding.yaml`**,然后使用**`kubectl`**创建ClusterRoleBinding:
kubectl apply -f dev-user-binding.yaml
  1. 与正确授权的案例类似,为了让dev-user通过kubectl访问集群,您需要配置kubectl上下文。假设您已经为dev-user创建了客户端证书,您需要将新用户添加到kubeconfig文件:
kubectl config set-credentials dev-user --client-key=dev-user.key --client-certificate=dev-user.crt --embed-certs=true

接下来,创建一个新的上下文,该上下文将使用新的用户凭据:

``` c

kubectl config set-context dev-user-context --cluster= --namespace=dev-namespace --user=dev-user
```

最后,切换到新创建的上下文:
kubectl config use-context dev-user-context

现在,由于错误地授予了集群管理员权限,dev-user不仅可以在dev-namespace中读取Pod资源,还可以在整个集群范围内执行任何操作。这可能导致潜在的安全风险,因为用户可以执行超出其预期权限范围的操作。为避免此类错误,始终仔细检查您的RBAC配置,确保遵循最小权限原则。

总结

本文从Kubernetes的相关概念出发,依次介绍了Kubernetes的安全模型、Kubernetes认证以及Kubernetes授权,并举例说明了证书认证和RBAC授权的配置流程和潜在的安全风险,为相关研究和实践提供参考。

作者:中兴沉烽实验室_lyc

参考文献

https://www.suse.com/c/rancher_blog/understanding-the-kubernetes-node/

https://kuboard.cn/learning/k8s-basics/explore.htmlhttps://stacksimplify.com/azure-aks/azure-kubernetes-service-namespaces-imperative/

https://www.harness.io/blog/kubernetes-services-explained

https://www.alibabacloud.com/blog/getting-started-with-kubernetes-|-access-control-a-security-measure-in-kubernetes_596331

https://thenewstack.io/a-primer-on-kubernetes-access-control/https://zone.huoxian.cn/d/1153-k8s

https://kubernetes.io/zh-cn/docs/home/

本文作者:中兴沉烽实验室, 转载请注明来自FreeBuf.COM

分享名称:Kubernetes安全之认证与授权
本文URL:http://www.mswzjz.cn/qtweb/news36/328336.html

温江区贝锐智能技术服务部_成都网站建设公司,为您提供关键词优化商城网站网页设计公司品牌网站建设网站建设定制开发

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能