随着近几年对机器学习技术投入的不断加大,GPU在计算速度上具有可观的优势。比如,用两块GPU进行的运算要比用两块处理器快得多。在linux系统上,可以使用C++UDA C/C++编程来实现GPU的开发。
创新互联建站为您提适合企业的网站设计 让您的网站在搜索引擎具有高度排名,让您的网站具备超强的网络竞争力!结合企业自身,进行网站设计及把握,最后结合企业文化和具体宗旨等,才能创作出一份性化解决方案。从网站策划到成都网站设计、做网站, 我们的网页设计师为您提供的解决方案。
CUDA是英伟达推出的一种并行计算平台,是全球受欢迎的GPU计算环境。CUDA的C语言框架是基于C++的,具有面向对象的特性,可以让程序员更快速地使用GPU进行应用编程。
在Linux系统上安装CUDA开发工具通常有两种方法:一是从官网下载安装;二是使用软件包管理工具进行安装。对于第一种安装方法,首先可以从官网上获取CUDA安装包,然后在Linux控制台中执行以下命令来安装CUDA:
“`Java
sudo rpm -i cuda-repo–
sudo yum install cuda
安装完CUDA后,就可以在Linux系统上开始使用CUDAC/C++编写GPU程序了。首先,通过以下命令在Linux系统里安装gcc编译器:
```Java
sudo apt-get install gcc-4.8
安装完gcc编译器后,就可以用它来编写NVidia GPU程序,将它编译成二进制文件。例如,下面这段代码是一段简单的CUDA C/C++程序,用来进行一个简单的数值计算:
“`C++
#include
__global__ void add(int *a, int *b, int *c) {
*c = *a + *b;
}
int main( void ){
int a, b, c;
int *dev_a, *dev_b, *dev_c;
// 为变量分配存储空间
cudaMalloc((void**) &dev_a, sizeof(int));
cudaMalloc((void**) &dev_b, sizeof(int));
cudaMalloc((void**) &dev_c, sizeof(int));
// 将变量内容拷贝到GPU内存中
cudaMemcpy(dev_a, &a, sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, &b, sizeof(int), cudaMemcpyHostToDevice);
// 调用GPU上的函数
add>>(dev_a, dev_b, dev_c);
// 将结果从GPU内存中拷贝至CPU
cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost);
// 释放GPU内存
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
return 0;
}
上面是一段简单的CUDA C/C++程序,给出了完整的GPU编程过程。要将这段程序编译为可执行文件,可以使用NVCC编译器:
```C++
nvcc hello.cu -o hello
以上就是在Linux下通过CUDA C/C++编程实现GPU的新玩法。CUDA是一个将CPU和GPU的功能有机结合的应用计算环境,为开发者提供了许多极具创新性的应用程序计算工具,使Linux上的GPU编程更有趣、更高效。
香港服务器选创新互联,2H2G首月10元开通。
创新互联(www.cdcxhl.com)互联网服务提供商,拥有超过10年的服务器租用、服务器托管、云服务器、虚拟主机、网站系统开发经验。专业提供云主机、虚拟主机、域名注册、VPS主机、云服务器、香港云服务器、免备案服务器等。
文章标题:Linux上GPU编程的新玩法(linux使用gpu)
文章起源:http://www.mswzjz.cn/qtweb/news36/166436.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能