手把手教你用Python画一个绝美土星环

 土星的行星环非常出名。虽然木星、土星、天王星和海王星也有环,但土星环是我们太阳系中最大、最亮、最广为人知的行星环。

创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:网站设计制作、成都做网站、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的万山网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

它由小到灰尘的颗粒,大到巨石的物体组成。这些物体的成分主要是冰,一般认为是彗星或较大的小行星与土星的一颗卫星相撞时产生的,两者都撞成了小碎块。在远古时代,土星就已为人所知,但直到1610年,伽利略才首次用望远镜对它进行观测。

这个行星以罗马农业之神土星Saturn命名为,也就是我们每个星期的第六天Saturday。

图1至图5中的图像是由本文文末的代码生成的。每张图都呈现不同的方向角,图标题中有相应的说明。

图标题中还列出了入射光线的单位矢量分量,例如lx=+0.707,ly=+0.707,lz=0 表示左上象限中的光源;lx=-1,ly=0,lz=0表示来自右侧的光源。在图像中请注意行星在环上投射的阴影,尤其是在图5中能够看到行星轮廓的曲率。

▲图1 包含土星环和阴影的土星1:Rx=-20°, Ry=0, Rz=-10°, lx=1, ly=0, lz=0

▲图2 包含土星环和阴影的土星2:Rx=-8°, Ry=0, Rz=-30°, lx=0.707, ly=.707, lz=0

▲图3 包含土星环和阴影的土星3:Rx=20°, Ry=0, Rz=25°, lx=0.707, ly=0.707, lz=0

▲图4 包含土星环和阴影的土星4:Rx=-10°, Ry=0, Rz=25°, lx=0.707, ly=-0.707, lz=0

▲图5 包含土星环和阴影的土星5:Rx=20°, Ry=0, Rz=30°, lx=-1, ly=0, lz=0

为了进行比较,你可以在下面网址找到土星的摄像图:

https://www.jpl.nasa.gov/spaceimages/?search=saturn&category=#submit

图6所示为构建土星环所用的数学模型。这里介绍一种实现球体着色的算法。首先创建一个直立球体,也就是说,经度是垂直的,纬度是水平的(即平行于XZ平面),然后从初始方向开始,围绕x,y和z轴对球体进行旋转。

▲图6 土星环模型:行星俯视图和从XZ平面上Rx=0, Ry=0, Rz=0向下看环

我们对土星环也进行同样的操作。我们可以创建平行于XZ平面的水平环,然后将它和土星一起旋转相同的角度。土星环所处的平面穿过土星的球心,因此土星和环具有相同的旋转中心。

土星环绘制为一系列相邻的同心圆,每个同心圆由短线段组成。参考图6和文末代码,程序第42和43行设置了土星环的内半径和外半径,第44行设置同心圆的间距。土星环被分成七个同心环形带(图6中未画出)且具有不同的颜色,第45行的deltar是它们的宽度。

构成同心圆的每个线段都单独绘制。第48行从r1向r2进行绘制,通过径向循环绘制圆弧段。第49行是绕圆周方向绘制的循环。第50-61行执行旋转操作产生第62和63行中的全局绘图坐标xpg和ypg,旋转函数与先前程序中的相同。

接下来在第66-75行中设置线段的颜色。土星环是由不同颜色的条带构成的,这和NASA观测图像中看到的物理组成结果一致。从r = r1到r1 + deltar的第一个条带具有颜色clr=(.63,.54,.18),剩余的条带也是如此。

第五个条带省略掉了,因为它是空的,背景颜色能显示出来。第六个条带的宽度是其他条带的两倍,并且为第七个条带提供了颜色。

对于给定的光方向,从大多数角度上,行星体本身都会在环上投下阴影。参考图7,我们的目标是确定点p到底位于行星阴影区域内部还是外部。

球状的行星将产生圆形的阴影,阴影的直径与行星的尺寸相等,或者更准确地说,是球体的“大圆”。它是用通过圆心的平面切割球体而得到的最大圆,就像把橙子切成两半,你看到的是一个橙子的最大圆。

在图7中,这种阴影可能是由相同大小的圆盘投影产生的,也可能是由球状行星投影产生的,两种情况下,阴影的大小都是一样的。在土星的侧面图中,大圆显示为是一条通过平面中心的加粗线。

从图7的几何图形中可以看出,如果p位于|B| > rs的位置,则它位于阴影区之外,其中rs是土星的半径;如果|B| < rs,则p位于在阴影区之中。在绘制条带的时候,如果我们确定了p的位置在阴影区中,我们就把这个点涂成灰色,如果它在阴影区之外,我们就用第66-75行设置的条带颜色给它着色。

▲图7 阴影模型

我们的目标是求出给定位置p时的|B|值,由图7可看出:

|B|=|V|sin(φ)

并且我们知道:

V×û=|V||û|sin(φ)

其中û=-î 。将上述方程与|û|=1合并得:

B=V×û

|B|=|V×û|

在代码第78行中确定了入射光矢量î 的长度为1,但如果在第23-25行中输入的分量不计算为1,即

则入射光矢量可能不等于1。有必要的话,需要在第79-81行进行重构。第82-84行建立矢量V的分量。第85-87行计算B的分量。第88行给出其幅度magB = |B|。

第89行确定p是否位于阴影区内,如果是,则执行第90行V与î的点积。这是用来确定p是否位于行星朝向光源的一侧,在这种情况下,它与行星的暗侧相对,而不在阴影区。因为在第78-89行的阴影算法中并未区分p的位置,所以此处必须进行明确。如果p确实位于阴影区域内的暗侧,则在第91行中将p设置为中等灰色。

相信你一定注意到,图6的土星环上有一个暗色条带,这是因为土星环在该位置上是空的:那里没有固体颗粒物,不能反射阳光。因此我们透过条带看到了背景颜色'midnightblue'。但这会产生一个问题,即阴影颜色的绘制会覆盖该空白处的背景颜色,因此在第93和94行将其重置为'midnightblue'。

既然条带的颜色都建立好了,我们就可以通过一个个短线段来绘制土星环了。第97-100行计算第一个线段的起始位置。参考图6,第100-101行确定该线段与土星的遮挡关系,线段在前就会被绘制。

103-108行确定线段是否在土星后面,位于后面就不会被绘制。这种遮挡关系是通过计算点的全局坐标与土星中心之间的距离c来完成的。

第107行的意思是,如果c大于球体半径的1.075倍,则绘制该段。因子1.075的作用是防止线段与球体的表面重合,这是有必要的,不然小于球体半径的可见区段将不会被绘制。

本文代码生成的图像有两点需要注意:首先是颜色。美国宇航局的摄影图像呈现的是一种几乎没有颜色灰色,但是许多土星观察者都将它描述为金黄色,因此我们选择了金色。

所有摄影师都知道,在摄影图像中呈现物体的真实颜色是十分困难的,颜色取决于入射光和物体本身的颜色,或许最好的方法是依靠肉眼观察。

如果你不赞同本文代码所生成的图像中的颜色,可以通过更改程序中clr的定义来修改它们。需要注意的第二点,是图5中土星表面阴影的曲率,它表示着色算法是否按预期工作。

在程序的使用上,你可以自行更改第24-26行中的入射光的方向和第32-34行中的旋转角度。

本文篇幅有限,更多更详细的讲解请参阅《Python图形编程:2D和3D图像的创建》一书。

  • 土星代码

运行代码也需要一段时间,请耐心等待。

 
 
 
  1. 1""" 
  2.   2SATURN 
  3.   3""" 
  4.   4 
  5.   5import numpy as np 
  6.   6import matplotlib.pyplot as plt 
  7.   7from math import sin, cos, radians, sqrt 
  8.   8 
  9.   9plt.axis([0,150,100,0]) 
  10.  10plt.axis('off') 
  11.  11plt.grid(False) 
  12.  12 
  13.  13print('running') 
  14.  14#—————————————————parameters 
  15.  15g=[0]*3 
  16.  16 
  17.  17xc=80 #———sphere center 
  18.  18yc=50 
  19.  19zc=0 
  20.  20 
  21.  21rs=25 #———sphere radius 
  22.  22 
  23.  23lx=-1 #———light ray unit vector components 
  24.  24ly=0 
  25.  25lz=0 
  26.  26 
  27.  27IA=0 
  28.  28IB=.8 
  29.  29+n=2 
  30.  30 
  31.  31Rx=radians(-20) 
  32.  32Ry=radians(0) 
  33.  33Rz=radians(30) 
  34.  34 
  35.  35#————————same as SHADESPHERE—————– 
  36.  36 
  37.  37#———————————————————rings 
  38.  38alpha1=radians(-10) 
  39.  39alpha2=radians(370) 
  40.  40dalpha=radians(.5) 
  41.  41 
  42.  42r1=rs*1.5 
  43.  43r2=rs*2.2 
  44.  44dr=rs*.02 
  45.  45deltar=(r2-r1)/7 #———ring band width 
  46.  46 
  47.  47#—————————————rotate ring point p which is at r, alpha 
  48.  48for r in np.arange(r1,r2,dr): 
  49.  49    for alpha in np.arange(alpha1,alpha2,dalpha): 
  50.  50        xp=r*cos(alpha) 
  51.  51        yp=0 
  52.  52        zp=-r*sin(alpha) 
  53.  53        rotx(xc,yc,zc,xp,yp,zp,Rx) 
  54.  54        xp=g[0]-xc 
  55.  55        yp=g[1]-yc 
  56.  56        zp=g[2]-zc 
  57.  57        roty(xc,yc,zc,xp,yp,zp,Ry) 
  58.  58        xp=g[0]-xc 
  59.  59        yp=g[1]-yc 
  60.  60        zp=g[2]-zc 
  61.  61        rotz(xc,yc,zc,xp,yp,zp,Rz) 
  62.  62        xpg=g[0] 
  63.  63        ypg=g[1] 
  64.  64 
  65.  65#—————————————————select ring band color 
  66.  66    if r1 <= r < r1+1*deltar: 
  67.  67        clr=(.63,.54,.18) 
  68.  68    if r1+1*deltar <= r <= r1+2*deltar: 
  69.  69        clr=(.78,.7,.1) 
  70.  70    if r1+2*deltar <= r <= r1+3*deltar: 
  71.  71        clr=(.95,.85,.1) 
  72.  72    if r1+3*deltar <= r <= r1+4*deltar: 
  73.  73        clr=(.87,.8,.1) 
  74.  74    if r1+5*deltar <= r <= r1+7*deltar: 
  75.  75        clr=(.7,.6,.2) 
  76.  76 
  77.  77#———————————————————————shadow 
  78.  78    magu=sqrt(lx*lx+ly*ly+lz*lz) 
  79.  79    ux=-lx/magu 
  80.  80    uy=-ly/magu 
  81.  81    uz=-lz/magu 
  82.  82    vx=xc-xpg 
  83.  83    vy=yc-ypg 
  84.  84    vz=zc-zpg 
  85.  85    Bx=uy*vz-uz*vy 
  86.  86    By=uz*vx-ux*vz 
  87.  87    Bz=ux*vy-uy*vx 
  88.  88    magB=sqrt(Bx*Bx+By*By+Bz*Bz) 
  89.  89    if magB < rs: #—————————if in the shadow region 
  90.  90        if vx*lx+vy*ly+vz*lz <= 0: #———if v points toward light source 
  91.  91            clr=(.5,.5,.2) #———shadow color 
  92.  92 
  93.  93    if r1+4*deltar <= r <= r1+5*deltar: #———overplot empty band 
  94.  94        clr='midnightblue' #———with background color 
  95.  95 
  96.  96#——————————————————–plot line segment 
  97.  97    if alpha == alpha1: 
  98.  98        xstart=xpg 
  99.  99        ystart=ypg 
  100. 100    if zpg <= zc: #–front (z axis points into the screen) 
  101. 101        plt.plot([xstart,xpg],[ystart,ypg],linewidth=2,color=clr) 
  102. 102 
  103. 103    if zpg >= zc: #–back 
  104. 104        a=xpg-xc 
  105. 105        b=ypg-yc 
  106. 106        c=sqrt(a*a+b*b) 
  107. 107        if c > rs*1.075: #——plot only the visible portion of rings 
  108. 108            plt.plot([xstart,xpg],[ystart,ypg],linewidth=2,color=clr) 
  109. 109        xstart=xpg 
  110. 110        ystart=ypg 
  111. 111 
  112. 112plt.show() 

当前文章:手把手教你用Python画一个绝美土星环
标题来源:http://www.mswzjz.cn/qtweb/news3/545153.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能