1、残差连接是目前常用的组件,解决了大规模深度学习模型梯度消失和瓶颈问题。
站在用户的角度思考问题,与客户深入沟通,找到大祥网站设计与大祥网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:网站设计制作、成都网站制作、企业官网、英文网站、手机端网站、网站推广、主机域名、网站空间、企业邮箱。业务覆盖大祥地区。
通常,在10层以上的模型中追加残差连接可能有帮助。
from keras import layers x = ... y = layers.Conv2D(128, 3, activation='relu', padding='same')(x) y = layers.Conv2D(128, 3, activation='relu', padding='same')(y) y = layers.MaxPooling2D(2, strides=2)(y) # 形状不同,要做线性变换: residual = layers.Conv2D(128, 1, strides=2, padding='same')(x) # 使用 1×1 卷积,将 x 线性下采样为与 y 具有相同的形状 y = layers.add([y, residual])
2、标准化用于使模型看到的不同样本更相似,有助于模型的优化和泛化。
# Conv conv_model.add(layers.Conv2D(32, 3, activation='relu')) conv_model.add(layers.BatchNormalization()) # Dense dense_model.add(layers.Dense(32, activation='relu')) dense_model.add(layers.BatchNormalization()) 3、深度可分离卷积层,在Keras中被称为SeparableConv2D,其功能与普通Conv2D相同。 但是SeparableConv2D比Conv2D轻,训练快,精度高。 from tensorflow.keras.models import Sequential, Model from tensorflow.keras import layers height = 64 width = 64 channels = 3 num_classes = 10 model = Sequential() model.add(layers.SeparableConv2D(32, 3, activation='relu', input_shape=(height, width, channels,))) model.add(layers.SeparableConv2D(64, 3, activation='relu')) model.add(layers.MaxPooling2D(2)) model.add(layers.SeparableConv2D(64, 3, activation='relu')) model.add(layers.SeparableConv2D(128, 3, activation='relu')) model.add(layers.MaxPooling2D(2)) model.add(layers.SeparableConv2D(64, 3, activation='relu')) model.add(layers.SeparableConv2D(128, 3, activation='relu')) model.add(layers.GlobalAveragePooling2D()) model.add(layers.Dense(32, activation='relu')) model.add(layers.Dense(num_classes, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
以上就是Python高级架构模式的整理,希望对大家有所帮助。更多Python学习指路:创新互联Python教程
本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。
文章名称:创新互联Python教程:Python高级架构模式的整理
网址分享:http://www.mswzjz.cn/qtweb/news3/278653.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能