Python中用XGBoost和scikit-learn进行随机梯度增强

 集成决策树的一种简单技术涉及在训练数据集的子样本上训练树。可以采用训练数据中行的子集来训练称为袋装的单个树。在计算每个分割点时,如果还使用了训练数据的行的子集,则这称为随机森林。这些技术也可以在称为随机梯度增强的技术中用于梯度树增强模型。

从策划到设计制作,每一步都追求做到细腻,制作可持续发展的企业网站。为客户提供成都做网站、网站制作、网站策划、网页设计、域名注册、网络空间、网络营销、VI设计、 网站改版、漏洞修补等服务。为客户提供更好的一站式互联网解决方案,以客户的口碑塑造优易品牌,携手广大客户,共同发展进步。

在本文中,您将发现随机梯度增强以及如何使用XGBoost和Python中的scikit-learn来调整采样参数。阅读这篇文章后,您将知道:

  •  在数据子样本上训练树的原理以及如何将其用于梯度增强。
  •  如何使用scikit-learn调整XGBoost中基于行的子采样。
  •  如何在XGBoost中按树和拆分点调整基于列的子采样。

随机梯度提升

梯度增强是一个贪婪的过程。将新的决策树添加到模型中,以更正现有模型的残差。使用贪婪搜索过程创建每个决策树,以选择最能最小化目标函数的分割点。这可能会导致树一次又一次使用相同的属性,甚至使用相同的分割点。

套袋是一种创建决策树集合的技术,每个决策树都来自训练数据中不同的随机行子集。效果是,由于样本的随机性允许创建略有不同的树木,因此从树的集合中获得了更好的性能,从而为集合的预测增加了方差。随机森林通过在选择分割点时对要素(列)进行二次采样,从而进一步扩大了这一步骤,从而进一步增加了树木的整体差异。这些相同的技术可以用于梯度提升中决策树的构建中,这种变化称为随机梯度提升。通常使用训练数据的激进子样本,例如40%到80%。

教程概述

在本教程中,我们将研究不同的二次采样技术在梯度增强中的作用。我们将调整Python的XGBoost库所支持的三种不同的随机梯度增强方式,特别是:

  •  创建每棵树时,对数据集中的行进行二次采样。
  •  创建每棵树时对数据集中的列进行二次采样。
  •  创建每个树时,数据集中每个拆分的列的子采样。

问题描述:Otto数据集

在本教程中,我们将使用“奥托集团产品分类挑战”数据集。该数据集可从Kaggle免费获得(您需要注册到Kaggle才能下载此数据集)。您可以从“数据”页面下载训练数据集train.csv.zip并将解压缩后的train.csv文件放入您的工作目录中。该数据集描述了61,000多种产品的93个混淆细节,这些产品分为10个产品类别(例如,时尚,电子产品等)。输入属性是某种不同事件的计数。目标是对新产品做出预测,将其作为10个类别中每一个类别的概率数组,并使用多类对数损失(也称为交叉熵)对模型进行评估。该竞赛已于2015年5月完成,并且由于示例数量不多,问题难度大,几乎不需要数据准备(除了将字符串类变量编码为整数)的事实,该数据集对于XGBoost还是一个很大的挑战。

在XGBoost中调整行二次采样

行二次抽样涉及选择训练数据集的随机样本而不进行替换。可以在subsample参数的XGBoost类的scikit-learn包装器中指定行子采样。默认值为1.0,该值不进行二次采样。我们可以使用scikit-learn中内置的网格搜索功能来评估从0.1到1.0的不同子样本值对Otto数据集的影响。 

 
 
 
  1. [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0] 

子样本有9个变体,每个模型将使用10倍交叉验证进行评估,这意味着需要训练和测试9×10或90个模型。

下面提供了完整的代码清单。 

 
 
 
  1. # XGBoost on Otto dataset, tune subsample  
  2. from pandas import read_csv  
  3. from xgboost import XGBClassifier  
  4. from sklearn.model_selection import GridSearchCV  
  5. from sklearn.model_selection import StratifiedKFold  
  6. from sklearn.preprocessing import LabelEncoder  
  7. import matplotlib  
  8. matplotlib.use('Agg')  
  9. from matplotlib import pyplot  
  10. # load data  
  11. data = read_csv('train.csv')  
  12. datadataset = data.values  
  13. # split data into X and y  
  14. X = dataset[:,0:94]  
  15. y = dataset[:,94]  
  16. # encode string class values as integers  
  17. label_encoded_y = LabelEncoder().fit_transform(y)  
  18. # grid search  
  19. model = XGBClassifier()  
  20. subsample = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0]  
  21. param_grid = dict(subsamplesubsample=subsample)  
  22. kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=7)  
  23. grid_search = GridSearchCV(model, param_grid, scoring="neg_log_loss", n_jobs=-1, cv=kfold)  
  24. grid_result = grid_search.fit(X, label_encoded_y)  
  25. # summarize results  
  26. print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))  
  27. means = grid_result.cv_results_['mean_test_score']  
  28. stds = grid_result.cv_results_['std_test_score']  
  29. params = grid_result.cv_results_['params']  
  30. for mean, stdev, param in zip(means, stds, params):  
  31.  print("%f (%f) with: %r" % (mean, stdev, param))  
  32. # plot  
  33. pyplot.errorbar(subsample, means, yerr=stds)  
  34. pyplot.title("XGBoost subsample vs Log Loss")  
  35. pyplot.xlabel('subsample')  
  36. pyplot.ylabel('Log Loss')  
  37. pyplot.savefig('subsample.png') 

运行此示例将打印最佳配置以及每个测试配置的日志丢失。

注意:由于算法或评估程序的随机性,或者数值精度的差异,您的结果可能会有所不同。考虑运行该示例几次并比较平均结果。

我们可以看到,获得的最佳结果是0.3,或者使用30%的训练数据集样本训练树。 

 
 
 
  1. Best: -0.000647 using {'subsample': 0.3}  
  2. -0.001156 (0.000286) with: {'subsample': 0.1}  
  3. -0.000765 (0.000430) with: {'subsample': 0.2}  
  4. -0.000647 (0.000471) with: {'subsample': 0.3}  
  5. -0.000659 (0.000635) with: {'subsample': 0.4}  
  6. -0.000717 (0.000849) with: {'subsample': 0.5}  
  7. -0.000773 (0.000998) with: {'subsample': 0.6}  
  8. -0.000877 (0.001179) with: {'subsample': 0.7}  
  9. -0.001007 (0.001371) with: {'subsample': 0.8}  
  10. -0.001239 (0.001730) with: {'subsample': 1.0} 

我们可以绘制这些均值和标准偏差对数损失值,以更好地了解性能如何随子样本值变化。

我们可以看到确实有30%的人具有最佳的平均表现,但是我们也可以看到,随着比率的增加,表现的差异会明显增加。有趣的是,所有子样本值的平均性能都优于不进行子抽样的平均性能(子样本= 1.0)。

在XGBoost中按树调整列二次采样

我们还可以在增强模型中创建每个决策树之前,创建要使用的特征(或列)的随机样本。在scikit-learn的XGBoost包装器中,这由colsample_bytree参数控制。默认值为1.0,表示在每个决策树中使用所有列。我们可以在0.1到1.0之间评估colsample_bytree的值,以0.1为增量。 

 
 
 
  1. [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0] 

完整实例如下: 

 
 
 
  1. # XGBoost on Otto dataset, tune colsample_bytree  
  2. from pandas import read_csv  
  3. from xgboost import XGBClassifier  
  4. from sklearn.model_selection import GridSearchCV  
  5. from sklearn.model_selection import StratifiedKFold  
  6. from sklearn.preprocessing import LabelEncoder  
  7. import matplotlib  
  8. matplotlib.use('Agg')  
  9. from matplotlib import pyplot  
  10. # load data  
  11. data = read_csv('train.csv')  
  12. datadataset = data.values  
  13. # split data into X and y  
  14. X = dataset[:,0:94]  
  15. y = dataset[:,94]  
  16. # encode string class values as integers  
  17. label_encoded_y = LabelEncoder().fit_transform(y)  
  18. # grid search  
  19. model = XGBClassifier()  
  20. colsample_bytree = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0]  
  21. param_grid = dict(colsample_bytreecolsample_bytree=colsample_bytree)  
  22. kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=7)  
  23. grid_search = GridSearchCV(model, param_grid, scoring="neg_log_loss", n_jobs=-1, cv=kfold)  
  24. grid_result = grid_search.fit(X, label_encoded_y)  
  25. # summarize results  
  26. print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))  
  27. means = grid_result.cv_results_['mean_test_score']  
  28. stds = grid_result.cv_results_['std_test_score']  
  29. params = grid_result.cv_results_['params']  
  30. for mean, stdev, param in zip(means, stds, params):  
  31.  print("%f (%f) with: %r" % (mean, stdev, param))  
  32. # plot  
  33. pyplot.errorbar(colsample_bytree, means, yerr=stds)  
  34. pyplot.title("XGBoost colsample_bytree vs Log Loss")  
  35. pyplot.xlabel('colsample_bytree')  
  36. pyplot.ylabel('Log Loss')  
  37. pyplot.savefig('colsample_bytree.png') 

运行此示例将打印最佳配置以及每个测试配置的日志丢失。

注意:由于算法或评估程序的随机性,或数值精度的差异,您的结果可能会有所不同。

我们可以看到,模型的最佳性能是colsample_bytree = 1.0。这表明该问题进行二次采样不会增加价值。 

 
 
 
  1. Best: -0.001239 using {'colsample_bytree': 1.0}  
  2. -0.298955 (0.002177) with: {'colsample_bytree': 0.1}  
  3. -0.092441 (0.000798) with: {'colsample_bytree': 0.2}  
  4. -0.029993 (0.000459) with: {'colsample_bytree': 0.3}  
  5. -0.010435 (0.000669) with: {'colsample_bytree': 0.4}  
  6. -0.004176 (0.000916) with: {'colsample_bytree': 0.5}  
  7. -0.002614 (0.001062) with: {'colsample_bytree': 0.6}  
  8. -0.001694 (0.001221) with: {'colsample_bytree': 0.7}  
  9. -0.001306 (0.001435) with: {'colsample_bytree': 0.8}  
  10. -0.001239 (0.001730) with: {'colsample_bytree': 1.0} 

绘制结果,我们可以看到模型平稳段的性能(至少在此比例下),值为0.5到1.0。

通过拆分在XGBoost中调整列二次采样

不必为每个树对列进行一次子采样,我们可以在决策树的每个拆分中对它们进行子采样。原则上,这是随机森林中使用的方法。我们可以在scikit-learn的XGBoost包装器类的colsample_bylevel参数中设置每个拆分所使用的列样本的大小。和以前一样,我们将比率从10%更改为默认值100%。

下面提供了完整的代码清单。 

 
 
 
  1. # XGBoost on Otto dataset, tune colsample_bylevel  
  2. from pandas import read_csv  
  3. from xgboost import XGBClassifier  
  4. from sklearn.model_selection import GridSearchCV  
  5. from sklearn.model_selection import StratifiedKFold  
  6. from sklearn.preprocessing import LabelEncoder  
  7. import matplotlib  
  8. matplotlib.use('Agg')  
  9. from matplotlib import pyplot  
  10. # load data  
  11. data = read_csv('train.csv')  
  12. datadataset = data.values  
  13. # split data into X and y  
  14. X = dataset[:,0:94]  
  15. y = dataset[:,94]  
  16. # encode string class values as integers  
  17. label_encoded_y = LabelEncoder().fit_transform(y)  
  18. # grid search  
  19. model = XGBClassifier()  
  20. colsample_bylevel = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0]  
  21. param_grid = dict(colsample_bylevelcolsample_bylevel=colsample_bylevel)  
  22. kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=7)  
  23. grid_search = GridSearchCV(model, param_grid, scoring="neg_log_loss", n_jobs=-1, cv=kfold)  
  24. grid_result = grid_search.fit(X, label_encoded_y)  
  25. # summarize results  
  26. print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))  
  27. means = grid_result.cv_results_['mean_test_score']  
  28. stds = grid_result.cv_results_['std_test_score']  
  29. params = grid_result.cv_results_['params']  
  30. for mean, stdev, param in zip(means, stds, params):  
  31.  print("%f (%f) with: %r" % (mean, stdev, param))  
  32. # plot  
  33. pyplot.errorbar(colsample_bylevel, means, yerr=stds)  
  34. pyplot.title("XGBoost colsample_bylevel vs Log Loss")  
  35. pyplot.xlabel('colsample_bylevel')  
  36. pyplot.ylabel('Log Loss')  
  37. pyplot.savefig('colsample_bylevel.png') 

运行此示例将打印最佳配置以及每个测试配置的日志丢失。

注意:由于算法或评估程序的随机性,或者数值精度的差异,您的结果可能会有所不同。考虑运行该示例几次并比较平均结果。

我们可以看到,通过将colsample_bylevel设置为70%可获得最佳结果,导致(倒置)对数损失为-0.001062,这比将每棵树的列采样设置为100%时看到的-0.001239好。

如果每棵树的结果建议使用100%的列,则建议不要放弃列二次采样,而应尝试按拆分的列二次采样。 

 
 
 
  1. Best: -0.001062 using {'colsample_bylevel': 0.7}  
  2. -0.159455 (0.007028) with: {'colsample_bylevel': 0.1}  
  3. -0.034391 (0.003533) with: {'colsample_bylevel': 0.2}  
  4. -0.007619 (0.000451) with: {'colsample_bylevel': 0.3}  
  5. -0.002982 (0.000726) with: {'colsample_bylevel': 0.4}  
  6. -0.001410 (0.000946) with: {'colsample_bylevel': 0.5}  
  7. -0.001182 (0.001144) with: {'colsample_bylevel': 0.6}  
  8. -0.001062 (0.001221) with: {'colsample_bylevel': 0.7}  
  9. -0.001071 (0.001427) with: {'colsample_bylevel': 0.8}  
  10. -0.001239 (0.001730) with: {'colsample_bylevel': 1.0} 

我们可以绘制每个colsample_bylevel变化的性能。结果表明,在此比例下的值为0.3后,方差相对较低,并且性能似乎处于平稳状态。 

网页标题:Python中用XGBoost和scikit-learn进行随机梯度增强
本文链接:http://www.mswzjz.cn/qtweb/news27/61277.html

温江区贝锐智能技术服务部_成都网站建设公司,为您提供虚拟主机企业建站网站设计响应式网站商城网站外贸网站建设

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能