决策树基本上是一个二叉树流程图,其中每个节点根据某个特征变量分割一组观察值。
在这里,我们正在构建一个用于预测男性或女性的决策树分类器。这里将采取一个非常小的数据集,有 19 个样本。 这些样本将包含两个特征 - “身高”和“头发长度”。
前提条件
为了构建以下分类器,我们需要安装 pydotplus
和 graphviz
。 基本上,graphviz 是使用点文件绘制图形的工具,pydotplus 是 Graphviz 的 Dot 语言模块。 它可以与包管理器或使用pip来安装。
现在,可以在以下 Python 代码的帮助下构建决策树分类器 -
首先,导入一些重要的库如下 -
import pydotplus
from sklearn import tree
from sklearn.datasets import load_iris
from sklearn.metrics import classification_report
from sklearn import cross_validation
import collections
现在,提供如下数据集 -
X = [[165,19],[175,32],[136,35],[174,65],[141,28],[176,15],[131,32],
[166,6],[128,32],[179,10],[136,34],[186,2],[126,25],[176,28],[112,38],
[169,9],[171,36],[116,25],[196,25]]
Y = ['Man','Woman','Woman','Man','Woman','Man','Woman','Man','Woman',
'Man','Woman','Man','Woman','Woman','Woman','Man','Woman','Woman','Man']
data_feature_names = ['height','length of hair']
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split
(X, Y, test_size=0.40, random_state=5)
在提供数据集之后,需要拟合可以如下完成的模型 -
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X,Y)
预测可以使用以下 Python 代码来完成 -
prediction = clf.predict([[133,37]])
print(prediction)
使用以下 Python 代码来实现可视化决策树 -
dot_data = tree.export_graphviz(clf,feature_names = data_feature_names,
out_file = None,filled = True,rounded = True)
graph = pydotplus.graph_from_dot_data(dot_data)
colors = ('orange', 'yellow')
edges = collections.defaultdict(list)
for edge in graph.get_edge_list():
edges[edge.get_source()].append(int(edge.get_destination()))
for edge in edges: edges[edge].sort()
for i in range(2):dest = graph.get_node(str(edges[edge][i]))[0]
dest.set_fillcolor(colors[i])
graph.write_png('Decisiontree16.png')
它会将上述代码的预测作为[‘Woman’]并创建以下决策树 -
可以改变预测中的特征值来测试它。
网页题目:创新互联AI教程:AI人工智能决策树分类器
链接地址:http://www.mswzjz.cn/qtweb/news27/356827.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能