Redis中的跳表和B树结构(redis跳表b树)

Redis中的跳表和B树结构

创新互联建站专注于企业成都营销网站建设、网站重做改版、大悟网站定制设计、自适应品牌网站建设、H5网站设计电子商务商城网站建设、集团公司官网建设、成都外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为大悟等各大城市提供网站开发制作服务。

Redis是一种高性能的键值存储系统,它使用了多种数据结构来实现不同的数据存储需求。跳表和B树是两种常用的数据结构,在Redis中它们都被广泛应用于存储和查找操作中。

跳表

跳表(Skip List)是一种有序的数据结构,它的基本思路是在单向链表上增加多级索引。每级索引都跨度比前一级大,对于查找、插入和删除等操作,使用索引可以加速访问链表中的元素,提高了效率。以下是一个简单的跳表实现:

“`python

import random

class Node:

def __init__(SELF, value=None, level=0):

self.value = value

self.level = level

self.forward = [None]*(level+1)

class SkipList:

def __init__(self):

self.head = Node()

self.max_level = 0

def random_level(self):

level = 0

while random.random()

level += 1

return level

def insert(self, value):

level = self.random_level()

node = Node(value, level)

update = [None]*(level+1)

curr = self.head

for i in range(self.max_level, -1, -1):

while curr.forward[i] and curr.forward[i].value

curr = curr.forward[i]

update[i] = curr

for i in range(level+1):

node.forward[i] = update[i].forward[i]

update[i].forward[i] = node

if level > self.max_level:

self.max_level = level

def search(self, value):

curr = self.head

for i in range(self.max_level, -1, -1):

while curr.forward[i] and curr.forward[i].value

curr = curr.forward[i]

if curr.forward[0] and curr.forward[0].value == value:

return curr.forward[0]

return None

def delete(self, value):

update = [None]*(self.max_level+1)

curr = self.head

for i in range(self.max_level, -1, -1):

while curr.forward[i] and curr.forward[i].value

curr = curr.forward[i]

update[i] = curr

if curr.forward[0] and curr.forward[0].value == value:

for i in range(self.max_level+1):

if update[i].forward[i] != curr.forward[i]:

break

update[i].forward[i] = curr.forward[i]

while self.max_level > 0 and self.head.forward[self.max_level] is None:

self.max_level -= 1

def display(self):

for i in range(self.max_level, -1, -1):

print(“Level {}: “.format(i), end=” “)

node = self.head

while node.forward[i] is not None:

print(node.forward[i].value, end=” “)

node = node.forward[i]

print(“”)

if __name__ == ‘__mn__’:

sl = SkipList()

sl.insert(1)

sl.insert(2)

sl.insert(3)

sl.insert(4)

sl.insert(5)

sl.display()

sl.delete(3)

sl.display()


在这个实现中,索引的数量是随机的,但是随着元素的增多,索引的数量也会增加。跳表的时间复杂度为O(logn),与二分查找相同。跳表可以解决一些常见的数据存储问题,比如有序链表的查找、插入和删除操作,但是它的空间复杂度较高,因为需要维护多级索引。

B树

B树也是一种多级索引的数据结构,它与跳表的不同之处在于,它是一个平衡树,每个节点可以包含多个元素,而不仅仅是一个。B树的每个节点都包含了一个元素数组和一个指向子节点的指针数组,每个节点中的元素都按照从小到大的顺序排列。以下是一个简单的B树实现:

```python
class Node:
def __init__(self, t):
self.t = t
self.KEYs = []
self.children = []
def traverse(self):
n = len(self.keys)
for i in range(n):
if i
self.children[i].traverse()
print(self.keys[i], end=" ")
if len(self.children) > n:
self.children[n].traverse()
def search(self, key):
i = 0
n = len(self.keys)
while i self.keys[i]:
i += 1
if i
return self
if len(self.children) > i:
return self.children[i].search(key)
return None
def insert(self, key):
n = len(self.keys)
i = n - 1
if self.is_leaf():
while i >= 0 and self.keys[i] > key:
self.keys[i+1] = self.keys[i]
i -= 1
self.keys[i+1] = key
else:
while i >= 0 and self.keys[i] > key:
i -= 1
if len(self.children[i+1].keys) == (2*self.t - 1):
self.split_child(i+1, self.children[i+1])
if self.keys[i+1]
i += 1
self.children[i+1].insert(key)
def split_child(self, i, y):
z = Node(y.t)
self.children.insert(i+1, z)
self.keys.insert(i, y.keys[y.t-1])
z.keys = y.keys[y.t:(2*y.t-1)]
y.keys = y.keys[0:(y.t-1)]
if not y.is_leaf():
z.children = y.children[y.t:(2*y.t)]
y.children = y.children[0:(y.t-1)]

def is_leaf(self):
return len(self.children) == 0
class BTree:
def __init__(self, t):
self.t = t
self.root = Node(t)
def traverse(self):
if self.root is not None:
self.root.traverse()

def search(self, key):
return None if self.root is None else self.root.search(key)
def insert(self, key):
if self.root is None:
self.root = Node(self.t)
self.root.keys.append(key)
else:
if len(self.root.keys) == (2*self.t - 1):
s = Node(self.t)
s.children.append(self.root)
s.split_child(0, self.root)
i = 0 if s.keys[0]
s.children[i].insert(key)
self.root = s
else:
self.root.insert(key)
if __name__ == '__mn__':
t = int(input("Enter value of t: "))
btree = BTree(t)
btree.insert(1)
btree.insert(3)
btree.insert(7)
btree.insert(10)
btree.insert(11)
btree.insert(13)
btree.insert(14)
btree.insert(15)
btree.insert(18)
btree.insert(16)
btree.insert(19)
print("Traversal of the constructed tree:")
btree.traverse()

在这个实现中,B树的度t是一个输入参数,它决定了每个节点中最多包含t-1个键和t个子节点。B树的时间复杂度为O(logn),与跳表相同,但是它的空间复杂度比跳表小,因为可以同时存储多个元素。B树常用于文件系统和数据库中,可以提高磁盘I/O的效率。

总结

Redis中的跳表和B树结构都是常见的数据结构,它们的共同点在于,都使用了多级索引来加速元素的访问,提高了效率。跳表适用于有序链表的查找和操作,B树适用于大规模数据的存储和管理。在实际应用中,需要根据具体的需求选择合适的数据结构来实现数据存储和查询操作。

香港云服务器机房,创新互联(www.cdcxhl.com)专业云服务器厂商,回大陆优化带宽,安全/稳定/低延迟.创新互联助力企业出海业务,提供一站式解决方案。香港服务器-免备案低延迟-双向CN2+BGP极速互访!

分享文章:Redis中的跳表和B树结构(redis跳表b树)
文章网址:http://www.mswzjz.cn/qtweb/news22/29172.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能