当Excel遇到大数据问题,是时候用Python来拯救了

与从事分析工作的人交谈,他们会告诉你他们对Excel的爱恨情仇:

创新互联建站坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、成都做网站、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的西湖网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

Excel能做很多事情;当涉及到更大的数据集时,这简直是一种痛苦。数据需要很长时间才能加载,在你意识到机器的内存耗尽之前,整个事情就变得无法管理了。更不用说Excel最多只能支持1,048,576行。

如果有一种简单的方法,那就是将数据传输到SQL数据库中进行分析。这就是Python拯救世界的方式。

Python中的SQL

首先,让我们研究一下在Python中使用SQL时最流行的选项:MySQL和SQLite。

MySQL有两个流行的库:PyMySQL和MySQLDb;而SQLite有SQLite3。

SQLite就是所谓的嵌入式数据库,这意味着它在我们的应用程序中运行,因此不需要先在某个地方安装它(不像MySQL)。

这是一个重要的区别;在我们寻求快速数据分析的过程中起着关键作用。因此,我们将继续学习如何使用SQLite。

在Python中设置SQLite

我们需要做的第一件事是导入库:

 
 
 
  1. import sqlite3 

然后,我们需要确定是否要在任何地方保存这个数据库,还是在应用程序运行时将它保存在内存中。

如果决定通过导入任何数据来实际保存数据库,那么我们必须给数据库一个名称,例如' FinanceExplainedDb ',并使用以下命令:

 
 
 
  1. dbname = 'FinanceExplainedDb' 
  2. conn = sqlite3.connect(dbname + '.sqlite') 

另一方面,如果我们想把整个东西保存在内存中,并在完成后让它消失,我们可以使用以下命令:

 
 
 
  1. conn = sqlite3.connect(':memory:') 

至此,SQLite已经全部设置好,可以在Python中使用了。假设我们在Table 1中加载了一些数据,我们可以用以下方式执行SQL命令:

 
 
 
  1. cur = conn.cursor() 
  2. cur.execute('SELECT * FROM Table1') 
  3. for row in cur: 
  4.     print(row) 

现在让我们探索如何通过使用pandas的应用程序使数据可用。

使用pandas加载数据

假设我们已经有了数据,我们想要进行分析,我们可以使用Pandas库来做这件事。

首先,我们需要导入pandas库,然后我们可以加载数据:

 
 
 
  1. import pandas as pd 
  2. #if we have a csv file 
  3. df = pd.read_csv('ourfile.csv') 
  4. #if we have an excel file 
  5. df = pd.read_excel('ourfile.xlsx') 

一旦我们加载数据,我们可以把它直接放入我们的SQL数据库与一个简单的命令:

 
 
 
  1. df.to_sql(name='Table1', con=conn) 

如果在同一个表中加载多个文件,可以使用if_exists参数:

 
 
 
  1. df.to_sql(name='Table1', con=conn, if_exists='append') 

在处理较大的数据集时,我们将无法使用这个单行命令来加载数据。我们的应用程序将耗尽内存。相反,我们必须一点一点地加载数据。在这个例子中,我们假设每次加载10,000行:

 
 
 
  1. chunksize = 10000 
  2. for chunk in pd.read_csv('ourfile.csv', chunksizechunksize=chunksize): 
  3.     chunk.to_sql(name='Table1', con=conn, if_exists='append') 

把所有的东西放在一起

为了将所有内容综合起来,我们提供一个Python脚本,它涵盖了我们讨论的大部分内容。

 
 
 
  1. import sqlite3, pandas as pd, numpy as np 
  2. #####Creating test data for us -- you can ignore 
  3. from sklearn import datasets 
  4. iris = datasets.load_iris() 
  5. df1 = pd.DataFrame(data= np.c_[iris['data'], iris['target']], columns= iris['feature_names'] + ['target']) 
  6. df1.to_csv('TestData.csv',index=False) 
  7. ########################### 
  8. conn = sqlite3.connect(':memory:') 
  9. cur = conn.cursor() 
  10. chunksize = 10 
  11. for chunk in pd.read_csv('TestData.csv', chunksizechunksize=chunksize): 
  12.     chunkchunk.columns = chunk.columns.str.replace(' ', '_') #replacing spaces with underscores for column names 
  13.     chunk.to_sql(name='Table1', con=conn, if_exists='append') 
  14. cur.execute('SELECT * FROM Table1') 
  15. names = list(map(lambda x: x[0], cur.description)) #Returns the column names 
  16. print(names) 
  17. for row in cur: 
  18.     print(row) 
  19. cur.close() 

当前题目:当Excel遇到大数据问题,是时候用Python来拯救了
新闻来源:http://www.mswzjz.cn/qtweb/news22/290322.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能