大家好,我是前端西瓜哥,有三个月没做算法题了,这次就来做一道动态规划中难度较低的题。
公司主营业务:网站设计、网站建设、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。成都创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。成都创新互联公司推出资兴免费做网站回馈大家。
给你一个只包含正整数的非空数组 nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 1:
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。
示例 2:
输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。
题目来源:
https://leetcode.cn/problems/partition-equal-subset-sum。
动态规划,它的模型需要符合 多阶段决策最优解模型,即要推导出最后的结果,它需要经历多个阶段。
比如经典的跳楼梯,假如你要跳到第 7 阶梯的楼梯,你需要先知道跳到第 5 和第 6 阶梯需要走的步数。
还比如 0-1 背包问题,我们在决策是否要放入第 n 个物品,我们需要知道上一个决策完成后,书包的所有可能的重量。
这些都是 阶段。我们让多个选择同时并行发生,产生一个个阶段,并记下状态,给下一个状态使用。
我们回到正题。
题目意思是问能否将数组拆分成两个子数组,这两个子数组的和相等。
其实这就等价于,数组元素中是否存在一个子数组,它的和为原数组的总和除以 2,这时它就变成了经典 0-1 背包问题,你需要决策每个阶段是否放入特定的数组元素,直到刚好为总和除以 2。
0-1 背包问题,有在书包有最大承重情况下,求放入物体的最大重量。或是提升到二维,求放入物体的最大价值。
这道题属于前者。
先看完整的题解:
function canPartition(nums) {
const sum = nums.reduce((sum, curr) => sum + curr, 0);
if (sum % 2 === 1) return false;
const half = sum / 2;
if (nums[0] === half) return true;
const dp = new Array(nums.length);
for (let i = 0; i < dp.length; i++) {
dp[i] = new Array(half + 1).fill(false);
}
dp[0][0] = true;
if (nums[0] <= half) {
dp[0][nums[0]] = true;
}
for (let i = 1; i < dp.length; i++) {
for (let j = 0; j < dp[i].length; j++) {
if (dp[i - 1][j] === true) {
dp[i][j] = true;
if (j + nums[i] < half) {
dp[i][j + nums[i]] = true;
} else if (j + nums[i] === half) {
return true;
}
}
}
}
return false;
};
这里的要点是构建一个二维布尔值数组 dp,用来保存每个阶段的状态,对于 dp[i][j],i 表示决策第 i 个元素是否被放入,j 表示子数组总和。
所以 dp[i][j] 的意思就是在决策第 i 个元素的阶段,是否存在一种可能,让总和为 j。
因为当前阶段需要靠上一个阶段推导,所以我们需要初始化第一阶段的状态:
const dp = new Array(nums.length);
for (let i = 0; i < dp.length; i++) {
dp[i] = new Array(half + 1).fill(false);
}
dp[0][0] = true;
if (nums[0] <= half) {
dp[0][nums[0]] = true;
}
然后推导下一个阶段时,就遍历上一阶段的值,如果为 true,就基于它决策加入当前元素和不加入当前元素后得到的新的总和,在对应的位置标记为 true,直到和为目标值。
for (let i = 1; i < dp.length; i++) {
for (let j = 0; j < dp[i].length; j++) {
if (dp[i - 1][j] === true) {
dp[i][j] = true;
if (j + nums[i] < half) {
dp[i][j + nums[i]] = true;
} else if (j + nums[i] === half) {
return true;
}
}
}
}
其实还可以做内存优化,将二维数组转换为一维数组,这需要用从后往前遍历数组的技巧。
这里还用二维数组的解法,是因为它还是比较经典的,有普适性,适合用于讲解。一些题目中,甚至能将优化为几个变量,比如跳楼梯。
动态规划,是有一定难度的算法题类型,也是面试大厂时比较常看到的题目,有掌握的必要性。
当前文章:【动态规划】LeetCode题解:416-分割等和子集
标题路径:http://www.mswzjz.cn/qtweb/news19/19269.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能