延迟任务在我们日常生活中比较常见,比如订单支付超时取消订单功能,又比如自动确定收货的功能等等。
所以本篇文章就来从实现到原理来盘点延迟任务的11种实现方式,这些方式并没有绝对的好坏之分,只是适用场景的不大相同。
DelayQueue是JDK提供的api,是一个延迟队列
DelayQueue泛型参数得实现Delayed接口,Delayed继承了Comparable接口。
getDelay方法返回这个任务还剩多久时间可以执行,小于0的时候说明可以这个延迟任务到了执行的时间了。
compareTo这个是对任务排序的,保证最先到延迟时间的任务排到队列的头。
@Getter
public class SanYouTask implements Delayed {
private final String taskContent;
private final Long triggerTime;
public SanYouTask(String taskContent, Long delayTime) {
this.taskContent = taskContent;
this.triggerTime = System.currentTimeMillis() + delayTime * 1000;
}
@Override
public long getDelay(TimeUnit unit) {
return unit.convert(triggerTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);
}
@Override
public int compareTo(Delayed o) {
return this.triggerTime.compareTo(((SanYouTask) o).triggerTime);
}
}
SanYouTask实现了Delayed接口,构造参数
测试
@Slf4j
public class DelayQueueDemo {
public static void main(String[] args) {
DelayQueuesanYouTaskDelayQueue = new DelayQueue<>();
new Thread(() -> {
while (true) {
try {
SanYouTask sanYouTask = sanYouTaskDelayQueue.take();
log.info("获取到延迟任务:{}", sanYouTask.getTaskContent());
} catch (Exception e) {
}
}
}).start();
log.info("提交延迟任务");
sanYouTaskDelayQueue.offer(new SanYouTask("三友的java日记5s", 5L));
sanYouTaskDelayQueue.offer(new SanYouTask("三友的java日记3s", 3L));
sanYouTaskDelayQueue.offer(new SanYouTask("三友的java日记8s", 8L));
}
}
开启一个线程从DelayQueue中获取任务,然后提交了三个任务,延迟时间分为别5s,3s,8s。
测试结果:
成功实现了延迟任务。
offer方法在提交任务的时候,会通过根据compareTo的实现对任务进行排序,将最先需要被执行的任务放到队列头。
take方法获取任务的时候,会拿到队列头部的元素,也就是队列中最早需要被执行的任务,通过getDelay返回值判断任务是否需要被立刻执行,如果需要的话,就返回任务,如果不需要就会等待这个任务到延迟时间的剩余时间,当时间到了就会将任务返回。
Timer也是JDK提供的api
@Slf4j
public class TimerDemo {
public static void main(String[] args) {
Timer timer = new Timer();
log.info("提交延迟任务");
timer.schedule(new TimerTask() {
@Override
public void run() {
log.info("执行延迟任务");
}
}, 5000);
}
}
通过schedule提交一个延迟时间为5s的延迟任务
提交的任务是一个TimerTask
public abstract class TimerTask implements Runnable {
//忽略其它属性
long nextExecutionTime;
}
TimerTask内部有一个nextExecutionTime属性,代表下一次任务执行的时间,在提交任务的时候会计算出nextExecutionTime值。
Timer内部有一个TaskQueue对象,用来保存TimerTask任务的,会根据nextExecutionTime来排序,保证能够快速获取到最早需要被执行的延迟任务。
在Timer内部还有一个执行任务的线程TimerThread,这个线程就跟DelayQueue demo中开启的线程作用是一样的,用来执行到了延迟时间的任务。
所以总的来看,Timer有点像整体封装了DelayQueue demo中的所有东西,让用起来简单点。
虽然Timer用起来比较简单,但是在阿里规范中是不推荐使用的,主要是有以下几点原因:
由于Timer在使用上有一定的问题,所以在JDK1.5版本的时候提供了ScheduledThreadPoolExecutor,这个跟Timer的作用差不多,并且他们的方法的命名都是差不多的,但是ScheduledThreadPoolExecutor解决了单线程和异常崩溃等问题。
@Slf4j
public class ScheduledThreadPoolExecutorDemo {
public static void main(String[] args) {
ScheduledThreadPoolExecutor executor = new ScheduledThreadPoolExecutor(2, new ThreadPoolExecutor.CallerRunsPolicy());
log.info("提交延迟任务");
executor.schedule(() -> log.info("执行延迟任务"), 5, TimeUnit.SECONDS);
}
}
结果
ScheduledThreadPoolExecutor继承了ThreadPoolExecutor,也就是继承了线程池,所以可以有很多个线程来执行任务。
ScheduledThreadPoolExecutor在构造的时候会传入一个DelayedWorkQueue阻塞队列,所以线程池内部的阻塞队列是DelayedWorkQueue。
在提交延迟任务的时候,任务会被封装一个任务会被封装成ScheduledFutureTask对象,然后放到DelayedWorkQueue阻塞队列中。
ScheduledFutureTask
ScheduledFutureTask实现了前面提到的Delayed接口,所以其实可以猜到DelayedWorkQueue会根据ScheduledFutureTask对于Delayed接口的实现来排序,所以线程能够获取到最早到延迟时间的任务。
当线程从DelayedWorkQueue中获取到需要执行的任务之后就会执行任务。
RocketMQ是阿里开源的一款消息中间件,实现了延迟消息的功能,如果有对RocketMQ不熟悉的小伙伴可以看一下我之前写的RocketMQ保姆级教程和RocketMQ消息短暂而又精彩的一生 这两篇文章。
RocketMQ延迟消息的延迟时间默认有18个等级。
当发送消息的时候只需要指定延迟等级即可。如果这18个等级的延迟时间不符和你的要求,可以修改RocketMQ服务端的配置文件。
依赖
org.apache.rocketmq
rocketmq-spring-boot-starter
2.2.1
org.springframework.boot
spring-boot-starter-web
2.2.5.RELEASE
配置文件
rocketmq:
name-server: 192.168.200.144:9876 #服务器ip:nameServer端口
producer:
group: sanyouProducer
controller类,通过DefaultMQProducer发送延迟消息到sanyouDelayTaskTopic这个topic,延迟等级为2,也就是延迟时间为5s的意思。
@RestController
@Slf4j
public class RocketMQDelayTaskController {
@Resource
private DefaultMQProducer producer;
@GetMapping("/rocketmq/add")
public void addTask(@RequestParam("task") String task) throws Exception {
Message msg = new Message("sanyouDelayTaskTopic", "TagA", task.getBytes(RemotingHelper.DEFAULT_CHARSET));
msg.setDelayTimeLevel(2);
// 发送消息并得到消息的发送结果,然后打印
log.info("提交延迟任务");
producer.send(msg);
}
}
创建一个消费者,监听sanyouDelayTaskTopic的消息。
@Component
@RocketMQMessageListener(consumerGroup = "sanyouConsumer", topic = "sanyouDelayTaskTopic")
@Slf4j
public class SanYouDelayTaskTopicListener implements RocketMQListener{
@Override
public void onMessage(String msg) {
log.info("获取到延迟任务:{}", msg);
}
}
启动应用,浏览器输入以下链接添加任务:http://localhost:8080/rocketmq/add?task=sanyou
测试结果:
生产者发送延迟消息之后,RocketMQ服务端在接收到消息之后,会去根据延迟级别是否大于0来判断是否是延迟消息
在BocketMQ内部有一个延迟任务,相当于是一个定时任务,这个任务就会获取SCHEDULE_TOPIC_XXXX中的消息,判断消息是否到了延迟时间,如果到了,那么就会将消息的topic存储到原来真正的topic(拿我们的例子来说就是sanyouDelayTaskTopic)中,之后消费者就可以从真正的topic中获取到消息了。
定时任务
RocketMQ这种实现方式相比于前面提到的三种更加可靠,因为前面提到的三种任务内容都是存在内存的,服务器重启任务就丢了,如果要实现任务不丢还得自己实现逻辑,但是RocketMQ消息有持久化机制,能够保证任务不丢失。
RabbitMQ也是一款消息中间件,通过RabbitMQ的死信队列也可以是先延迟任务的功能。
引入RabbitMQ的依赖
org.springframework.boot
spring-boot-starter-amqp
2.2.5.RELEASE
配置文件
spring:
rabbitmq:
host: 192.168.200.144 #服务器ip
port: 5672
virtual-host: /
RabbitMQ死信队列的配置类,后面说原理的时候会介绍干啥的
@Configuration
public class RabbitMQConfiguration {
@Bean
public DirectExchange sanyouDirectExchangee() {
return new DirectExchange("sanyouDirectExchangee");
}
@Bean
public Queue sanyouQueue() {
return QueueBuilder
//指定队列名称,并持久化
.durable("sanyouQueue")
//设置队列的超时时间为5秒,也就是延迟任务的时间
.ttl(5000)
//指定死信交换机
.deadLetterExchange("sanyouDelayTaskExchangee")
.build();
}
@Bean
public Binding sanyouQueueBinding() {
return BindingBuilder.bind(sanyouQueue()).to(sanyouDirectExchangee()).with("");
}
@Bean
public DirectExchange sanyouDelayTaskExchange() {
return new DirectExchange("sanyouDelayTaskExchangee");
}
@Bean
public Queue sanyouDelayTaskQueue() {
return QueueBuilder
//指定队列名称,并持久化
.durable("sanyouDelayTaskQueue")
.build();
}
@Bean
public Binding sanyouDelayTaskQueueBinding() {
return BindingBuilder.bind(sanyouDelayTaskQueue()).to(sanyouDelayTaskExchange()).with("");
}
}
RabbitMQDelayTaskController用来发送消息,这里没指定延迟时间,是因为在声明队列的时候指定了延迟时间为5s
@RestController
@Slf4j
public class RabbitMQDelayTaskController {
@Resource
private RabbitTemplate rabbitTemplate;
@GetMapping("/rabbitmq/add")
public void addTask(@RequestParam("task") String task) throws Exception {
// 消息ID,需要封装到CorrelationData中
CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
log.info("提交延迟任务");
// 发送消息
rabbitTemplate.convertAndSend("sanyouDirectExchangee", "", task, correlationData);
}
}
启动应用,浏览器输入以下链接添加任务:http://localhost:8080/rabbitmq/add?task=sanyou
测试结果,成功实现5s的延迟任务
整个工作流程如下:
上面说的队列与交换机的绑定关系,就是上面的配置类所干的事。
其实从这个单从消息流转的角度可以看出,RabbitMQ跟RocketMQ实现有相似之处。
消息最开始都并没有放到最终消费者消费的队列中,而都是放到一个中间队列中,等消息到了过期时间或者说是延迟时间,消息就会被放到最终的队列供消费者消息。
只不过RabbitMQ需要你显示的手动指定消息所在的中间队列,而RocketMQ是在内部已经做好了这块逻辑。
除了基于RabbitMQ的死信队列来做,RabbitMQ官方还提供了延时插件,也可以实现延迟消息的功能,这个插件的大致原理也跟上面说的一样,延时消息会被先保存在一个中间的地方,叫做Mnesia,然后有一个定时任务去查询最近需要被投递的消息,将其投递到目标队列中。
在Redis中,有个发布订阅的机制
生产者在消息发送时需要到指定发送到哪个channel上,消费者订阅这个channel就能获取到消息。图中channel理解成MQ中的topic。
并且在Redis中,有很多默认的channel,只不过向这些channel发送消息的生产者不是我们写的代码,而是Redis本身。这里面就有这么一个channel叫做__keyevent@
当某个Redis的key过期之后,Redis内部会发布一个事件到__keyevent@
所以基于监听Redis过期key实现延迟任务的原理如下:
Spring已经实现了监听__keyevent@*__:expired这个channel这个功能,__keyevent@*__:expired中的*代表通配符的意思,监听所有的数据库。
所以demo写起来就很简单了,只需4步即可
依赖
org.springframework.boot
spring-boot-starter-data-redis
2.2.5.RELEASE
配置文件
spring:
redis:
host: 192.168.200.144
port: 6379
配置类
@Configuration
public class RedisConfiguration {
@Bean
public RedisMessageListenerContainer redisMessageListenerContainer(RedisConnectionFactory connectionFactory) {
RedisMessageListenerContainer redisMessageListenerContainer = new RedisMessageListenerContainer();
redisMessageListenerContainer.setConnectionFactory(connectionFactory);
return redisMessageListenerContainer;
}
@Bean
public KeyExpirationEventMessageListener redisKeyExpirationListener(RedisMessageListenerContainer redisMessageListenerContainer) {
return new KeyExpirationEventMessageListener(redisMessageListenerContainer);
}
}
KeyExpirationEventMessageListener实现了对__keyevent@*__:expiredchannel的监听
当KeyExpirationEventMessageListener收到Redis发布的过期Key的消息的时候,会发布RedisKeyExpiredEvent事件
所以我们只需要监听RedisKeyExpiredEvent事件就可以拿到过期消息的Key,也就是延迟消息。
对RedisKeyExpiredEvent事件的监听实现MyRedisKeyExpiredEventListener
@Component
public class MyRedisKeyExpiredEventListener implements ApplicationListener{
@Override
public void onApplicationEvent(RedisKeyExpiredEvent event) {
byte[] body = event.getSource();
System.out.println("获取到延迟消息:" + new String(body));
}
}
代码写好,启动应用
之后我直接通过Redis命令设置消息,就没通过代码发送消息了,消息的key为sanyou,值为task,值不重要,过期时间为5s
set sanyou task
expire sanyou 5
成功获取到延迟任务
虽然这种方式可以实现延迟任务,但是这种方式坑比较多
Redis过期事件的发布不是指key到了过期时间就发布,而是key到了过期时间被清除之后才会发布事件。
而Redis过期key的两种清除策略,就是面试八股文常背的两种:
所以即使key到了过期时间,Redis也不一定会发送key过期事件,这就到导致虽然延迟任务到了延迟时间也可能获取不到延迟任务。
Redis实现的发布订阅模式,消息是没有持久化机制,当消息发布到某个channel之后,如果没有客户端订阅这个channel,那么这个消息就丢了,并不会像MQ一样进行持久化,等有消费者订阅的时候再给消费者消费。
所以说,假设服务重启期间,某个生产者或者是Redis本身发布了一条消息到某个channel,由于服务重启,没有监听这个channel,那么这个消息自然就丢了。
Redis的发布订阅模式消息消费只有广播模式一种。
所谓的广播模式就是多个消费者订阅同一个channel,那么每个消费者都能消费到发布到这个channel的所有消息。
如图,生产者发布了一条消息,内容为sanyou,那么两个消费者都可以同时收到sanyou这条消息。
所以,如果通过监听channel来获取延迟任务,那么一旦服务实例有多个的话,还得保证消息不能重复处理,额外地增加了代码开发量。
这个不属于Redis发布订阅模式的问题,而是Redis本身事件通知的问题。
当监听了__keyevent@
所以如果你只想消费某一类消息的key,那么还得自行加一些标记,比如消息的key加个前缀,消费的时候判断一下带前缀的key就是需要消费的任务。
Redisson他是Redis的儿子(Redis son),基于Redis实现了非常多的功能,其中最常使用的就是Redis分布式锁的实现,但是除了实现Redis分布式锁之外,它还实现了延迟队列的功能。
引入pom
org.redisson
redisson
3.13.1
封装了一个RedissonDelayQueue类
@Component
@Slf4j
public class RedissonDelayQueue {
private RedissonClient redissonClient;
private RDelayedQueuedelayQueue;
private RBlockingQueueblockingQueue;
@PostConstruct
public void init() {
initDelayQueue();
startDelayQueueConsumer();
}
private void initDelayQueue() {
Config config = new Config();
SingleServerConfig serverConfig = config.useSingleServer();
serverConfig.setAddress("redis://localhost:6379");
redissonClient = Redisson.create(config);
blockingQueue = redissonClient.getBlockingQueue("SANYOU");
delayQueue = redissonClient.getDelayedQueue(blockingQueue);
}
private void startDelayQueueConsumer() {
new Thread(() -> {
while (true) {
try {
String task = blockingQueue.take();
log.info("接收到延迟任务:{}", task);
} catch (Exception e) {
e.printStackTrace();
}
}
}, "SANYOU-Consumer").start();
}
public void offerTask(String task, long seconds) {
log.info("添加延迟任务:{} 延迟时间:{}s", task, seconds);
delayQueue.offer(task, seconds, TimeUnit.SECONDS);
}
}
这个类在创建的时候会去初始化延迟队列,创建一个RedissonClient对象,之后通过RedissonClient对象获取到RDelayedQueue和RBlockingQueue对象,传入的队列名字叫SANYOU,这个名字无所谓。
当延迟队列创建之后,会开启一个延迟任务的消费线程,这个线程会一直从RBlockingQueue中通过take方法阻塞获取延迟任务。
添加任务的时候是通过RDelayedQueue的offer方法添加的。
controller类,通过接口添加任务,延迟时间为5s
@RestController
public class RedissonDelayQueueController {
@Resource
private RedissonDelayQueue redissonDelayQueue;
@GetMapping("/add")
public void addTask(@RequestParam("task") String task) {
redissonDelayQueue.offerTask(task, 5);
}
}
启动项目,在浏览器输入如下连接,添加任务:http://localhost:8080/add?task=sanyou
静静等待5s,成功获取到任务。
如下是Redisson延迟队列的实现原理
SANYOU前面的前缀都是固定的,Redisson创建的时候会拼上前缀。
任务提交的时候,Redisson会将任务放到redisson_delay_queue_timeout:SANYOU中,分数就是提交任务的时间戳+延迟时间,就是延迟任务的到期时间戳
Redisson客户端内部通过监听redisson_delay_queue_channel:SANYOU这个channel来提交一个延迟任务,这个延迟任务能够保证将redisson_delay_queue_timeout:SANYOU中到了延迟时间的任务从redisson_delay_queue_timeout:SANYOU中移除,存到SANYOU这个目标队列中。
于是消费者就可以从SANYOU这个目标队列获取到延迟任务了。
所以从这可以看出,Redisson的延迟任务的实现跟前面说的MQ的实现都是殊途同归,最开始任务放到中间的一个地方,叫做redisson_delay_queue_timeout:SANYOU,然后会开启一个类似于定时任务的一个东西,去判断这个中间地方的消息是否到了延迟时间,到了再放到最终的目标的队列供消费者消费。
Redisson的这种实现方式比监听Redis过期key的实现方式更加可靠,因为消息都存在list和sorted set数据类型中,所以消息很少丢。
上述说的两种Redis的方案更详细的介绍,可以查看我之前写的用Redis实现延迟队列,我研究了两种方案,发现并不简单这篇文章。
@Slf4j
public class NettyHashedWheelTimerDemo {
public static void main(String[] args) {
HashedWheelTimer timer = new HashedWheelTimer(100, TimeUnit.MILLISECONDS, 8);
timer.start();
log.info("提交延迟任务");
timer.newTimeout(timeout -> log.info("执行延迟任务"), 5, TimeUnit.SECONDS);
}
}
测试结果
如图,时间轮会被分成很多格子(上述demo中的8就代表了8个格子),一个格子代表一段时间(上述demo中的100就代表一个格子是100ms),所以上述demo中,每800ms会走一圈。
当任务提交的之后,会根据任务的到期时间进行hash取模,计算出这个任务的执行时间所在具体的格子,然后添加到这个格子中,通过如果这个格子有多个任务,会用链表来保存。所以这个任务的添加有点像HashMap储存元素的原理。
HashedWheelTimer内部会开启一个线程,轮询每个格子,找到到了延迟时间的任务,然后执行。
由于HashedWheelTimer也是单线程来处理任务,所以跟Timer一样,长时间运行的任务会导致其他任务的延时处理。
前面Redisson中提到的客户端延迟任务就是基于Netty的HashedWheelTimer实现的。
Hutool工具类也提供了延迟任务的实现SystemTimer
@Slf4j
public class SystemTimerDemo {
public static void main(String[] args) {
SystemTimer systemTimer = new SystemTimer();
systemTimer.start();
log.info("提交延迟任务");
systemTimer.addTask(new TimerTask(() -> log.info("执行延迟任务"), 5000));
}
}
执行结果
Hutool底层其实也用到了时间轮。
Qurtaz是一款开源作业调度框架,基于Qurtaz提供的api也可以实现延迟任务的功能。
依赖
org.quartz-scheduler
quartz
2.3.2
SanYouJob实现Job接口,当任务到达执行时间的时候会调用execute的实现,从context可以获取到任务的内容
@Slf4j
public class SanYouJob implements Job {
@Override
public void execute(JobExecutionContext context) throws JobExecutionException {
JobDetail jobDetail = context.getJobDetail();
JobDataMap jobDataMap = jobDetail.getJobDataMap();
log.info("获取到延迟任务:{}", jobDataMap.get("delayTask"));
}
}
测试类
public class QuartzDemo {
public static void main(String[] args) throws SchedulerException, InterruptedException {
// 1.创建Scheduler的工厂
SchedulerFactory sf = new StdSchedulerFactory();
// 2.从工厂中获取调度器实例
Scheduler scheduler = sf.getScheduler();
// 6.启动 调度器
scheduler.start();
// 3.创建JobDetail,Job类型就是上面说的SanYouJob
JobDetail jb = JobBuilder.newJob(SanYouJob.class)
.usingJobData("delayTask", "这是一个延迟任务")
.build();
// 4.创建Trigger
Trigger t = TriggerBuilder.newTrigger()
//任务的触发时间就是延迟任务到的延迟时间
.startAt(DateUtil.offsetSecond(new Date(), 5))
.build();
// 5.注册任务和定时器
log.info("提交延迟任务");
scheduler.scheduleJob(jb, t);
}
}
执行结果:
核心组件
启动的时候会开启一个QuartzSchedulerThread调度线程,这个线程会去判断任务是否到了执行时间,到的话就将任务交给任务线程池去执行。
无限轮询的意思就是开启一个线程不停的去轮询任务,当这些任务到达了延迟时间,那么就执行任务。
@Slf4j
public class PollingTaskDemo {
private static final ListDELAY_TASK_LIST = new CopyOnWriteArrayList<>();
public static void main(String[] args) {
new Thread(() -> {
while (true) {
try {
for (DelayTask delayTask : DELAY_TASK_LIST) {
if (delayTask.triggerTime <= System.currentTimeMillis()) {
log.info("处理延迟任务:{}", delayTask.taskContent);
DELAY_TASK_LIST.remove(delayTask);
}
}
TimeUnit.MILLISECONDS.sleep(100);
} catch (Exception e) {
}
}
}).start();
log.info("提交延迟任务");
DELAY_TASK_LIST.add(new DelayTask("三友的java日记", 5L));
}
@Getter
@Setter
public static class DelayTask {
private final String taskContent;
private final Long triggerTime;
public DelayTask(String taskContent, Long delayTime) {
this.taskContent = taskContent;
this.triggerTime = System.currentTimeMillis() + delayTime * 1000;
}
}
}
任务可以存在数据库又或者是内存,看具体的需求,这里我为了简单就放在内存里了。
名称栏目:从实现到原理,我总结了11种延迟任务的实现方式
分享网址:http://www.mswzjz.cn/qtweb/news17/458817.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能