在业务项目发展过程中,我们常常会面对要处理 MySQL 慢查询问题,那我们应该如何分析解决问题呢?
部分同学在处理 MySQL 慢查询时候主要思路是加索引来解决,加索引确实是一个很好的解决问题的手段,但不是全部。既然慢查询是问题,那就需要明确问题发生原因,和解决问题路径分析。我们一起来 get 下 MySQL 慢查询的正确姿势。
首先需要明确:一个查询 SQL 的执行到底经历了什么?
数据库执行 sql 的大致流程如下:
具体执行过程可能会因 MySQL 服务器具体配置和执行场景有一些差异。
情况如下:
我们可以把查询 SQL 执行看做是一个任务的话,那它是由一些列子任务组成的,每个子任务都存在一定的时间消耗。通常情况下,导致慢查询最根本的问题就是访问的数据太多,导致查询不可避免的需要筛选大量的数据。
面对慢查询,我们需要注意以下两点:
MySQL 并不是只返回需要的数据,实际上会返回全部结果集再进行计算。
尤其是多表关联查询 select * 的情况,我们是不是真的需要全部的列呢?如果不是,那我们直接指定对应字段就好了。
例如我们要查询用户关联订单下的商品信息,如下所示:
SELECT *
FROM users
LEFT JOIN orders ON orders.user_id = users.user_id
LEFT JOIN goods ON goods.good_id = orders.good_id
WHERE users.name = 'zhangsan';
这将返回三个表的全部数据列,可以调整为仅取需要的列:
SELECT goods.title, goods.description
FROM users
LEFT JOIN orders ON orders.user_id = users.user_id
LEFT JOIN goods ON goods.good_id = orders.good_id
WHERE users.name = 'zhangsan';
取出全部列,会让优化器无法完成索引覆盖扫描这类优化,还会为服务器带来额外的 I/O、内存和 CPU 的消耗。
此种情况大部分属于索引应用不当造成的(包括:该建的索引没有建,或者未应用到最佳索引)。
实例表结构如下:
CREATE TABLE `test_table` (
`id` bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT,
`name` varchar(32) DEFAULT NULL,
`desc` varchar(32) DEFAULT NULL,
`age` int(16) DEFAULT NULL,
KEY `idx_age` (`age`)
) ENGINE = InnoDB CHARSET = utf8mb4;
示例查询 SQL 执行计划:
EXPLAIN SELECT * FROM test_table WHERE age = 10;
应用索引 idx_age 后, 预估访问 1 行数据,如下图所示:
如删除有效索引后则会变成全表扫描(ALL),预估需要扫描 121524 条记录才能完成这个查询,如下图所示:
发现了慢查询之后,关于如何定位问题发生原因,最常用的方法就是利用 EXPLAIN 关键字模拟查询优化器执行查询 SQL,从而知道 MySQL 是如何处理你的查询 SQL,通过执行计划来分析性能瓶颈。
通常我们使用 EXPLAIN,会得到如下的执行计划信息:
关于各字段含义,大家可以通过检索自行了解,在此就不再过多赘述。
关于定位分析问题,关键看如下几点。
表示查询类型,用于区别普通查询、联合查询、子查询等复杂查询。
显示查询使用类型,从好到差依次为:
system > const > eq_ref > ref > range > index > all
分别指可能应用的索引和实际应用的索引。
注意:查询中若使用了覆盖索引(select 后要查询的字段刚好和创建的索引字段完全相同),则该索引仅出现在 key 列表中。
大致估算出找到所需记录所需要读取的行数(从效率上来讲,数值越小越好)。
重要的额外信息。包含 MySQL 解决查询的详细信息,也是关键参考项之一。
我们通过 EXPLAIN 关键字模拟查询优化器执行查询 SQL,发现了慢查询问题原因,那看看如何才能有效解决呢?
推荐几种较为实用的解决方案给大家。
MySQL 支持很多数据类型,选择合适的数据类型存储数据对性能有很大的影响。
通常来说,可以遵循以下一些指导原则。
越小的数据类型通常在磁盘、内存和 CPU 缓存中都需要更少的空间,处理起来更快。
整型数据比起字符,处理开销更小,因为字符串的比较更复杂。在 MySQL 中,应该用内置的日期和时间数据类型,而不是用字符串来存储时间;以及用整型数据类型存储 IP 地址。
应该指定列为 NOT NULL,在 MySQL 中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。
你可以用 0、一个特殊的值或者一个空串代替 NULL 值。
范式化模型要求满足下面三大范式:
1. 数据库表中每个字段只包含最小的信息属性,不能再进行细化分解。
2. 模型含有主键,非主键字段依赖主键(在满足 1 的基础上)。
比如用户这个模型,它的主键是用户 ID,那么用户模型其它字段都应该依赖于用户 ID,如商品 ID 和用户没有直接关系,则这个属性不应该放到用户模型而应该放到”用户-商品”关联订单表。
3. 模型非主键字段不能相互依赖(在满足 2 的基础上)。
例如:设计订单表(订单 ID、用户 ID、用户姓名……)
乍一看该表满足第二范式,每列都和主键列“订单 ID”相关,但是其中“用户 ID”和“用户姓名”相关,而且“用户 ID”和“订单 ID”又也相关,依次推断:“用户姓名”和“订单 ID”也相关。不满足第三范式,应去掉订单表“用户姓名” 列,放入到用户表中。
反范式化模型即不满足范式化的模型。主要是为了性能和效率的考虑适当的违反范式化设计要求,允许存在少量的数据冗余,即以空间换时间。
可见一个良好而实用的数据模型往往是依赖于具体的需求场景的,在设计数据模型之前,仔细分析需求场景,不仅能提高效率,也能有效规避后期可能遇到的一些意外麻烦。
范式化设计和反范式化设计的对比:
索引(MySQL 中也被称为“键 Key”),是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能非常关键,尤其当表中的数据量越来越大时,索引对性能的影响愈发重要(不恰当的索引对会随数据量增大时,性能急剧下降)。
举例如下情况:
假设数据库中一个表有 10^6 条记录,DBMS 的页面大小为 4K(约可存储 100 条记录)。
如果没有索引,查询将对整个表进行扫描,最坏的情况下,如果所有数据页都不在内存,需要读取 10^4 个页面,如果这 10^4 个页面在磁盘上随机分布,需要进行 10^4 次 I/O,假设磁盘每次 I/O 时间为 10ms(忽略数据传输时间),则总共需要 100s(但实际上要好很多很多)。
如果对之建立 B-Tree 索引,则只需要进行 log100( 10^6 )=3 次页面读取,最坏情况下耗时 30ms。这就是索引带来的效果。
了解了索引的优点之后,其实正确的创建和使用索引是实现高性能查询的基础。
可以利用 B-Tree 索引进行全关键字、关键字范围和关键字前缀查询,当然,如果想使用索引,必须保证按索引的最左边前缀(leftmost prefix of the index)来进行查询。
最左前缀原则主要使用在联合索引中。
例如:联合索引 idx_col1_col2_col3(col1、col2、col3)。
对索引中的所有列都指定具体的值:
-- 以下均可以应用到此联合索引(此情况字段顺序无关)
col1 = 'a' AND col2 = 'b' AND col3 = 'c'
col2 = 'c' AND col3 = 'b' AND col1 = 'a'
col3 = 'c' AND col1 = 'b' AND col2 = 'a'
尽可能应用到联合索引中的排序靠前的字段:
-- 以下均可以应用联合索引中的部分索引
-- 以下均可以应用联合索引中的部分索引
col1 = 'a' AND col2 = 'b'
col1 = 'a'
col1 like 'a%'
仅对索引进行查询,如果查询的列都位于索引中,则不需要读取列元组的值。
select a, b, c
聚簇索引保证关键字的值相近的元组存储的物理位置也相同(所以字符串类型不宜建立聚簇索引,特别是随机字符串,会使得系统进行大量的移动操作),且一个表只能有一个聚簇索引。因为由存储引擎实现索引,所以,并不是所有的引擎都支持聚簇索引。目前,只有 SolidDB 和 InnoDB 支持。
InnoDB 对主键建立聚簇索引。如果你不指定主键,InnoDB 会用一个具有唯一且非空值的索引来代替。如果不存在这样的索引,InnoDB 会定义一个隐藏的主键,然后对其建立聚簇索引。
MySQL 查询缓存会保存查询返回的完整结果。当查询命中缓存,MySQL 会立刻返回结果,而跳过了后续解析、优化以及执行阶段,会有效提升查询性能。
但是查询缓存不是银弹,它也会存在一些问题。
-- 不会使用同一个缓存
select name from users where id = 1;
SELECT name FROM users WHERE id = 1;
假如缓存过查询结果,但是由于查询缓存设置内存不足,新缓存加入时 MySQL 会将某些缓存逐出,导致后续查询未命中;
数据结构及数据修改、内存不足、缓存碎片都会导致缓存失效。
查询缓存对应用程序完全透明,应用程序无需关心 MySQL 是通过查询缓存返回的还是实际执行返回的结果。但随着目前服务器性能越来越强,查询缓存被发现是一个影响服务器扩展性的因素,它很可能成为整个服务器的资源竞争点,大家采用生产环境开启应用时候一定要慎重考量。
优化慢查询时候,我们可以转换下思路,我们的目标是找到一个更优的方法获取时间需要的结果,而不是一定从 MySQL 获取一模一样的结果集。重构查询的技巧很有必要。
将一个复杂查询拆分多个简单查询,考虑是否需要将一个复杂查询拆分为多个简单查询。
实际开发过程中,大家往往会强调数据库层完成尽可能多的工作,这样做的初衷是认为网络通信、查询解析和优化是一件代价很高的事情,其实 MySQL 从设计上让连接和断开都很轻量级,同时在返回一个小查询结果方面很高效。况且目前网络速度也比之前快很多,无论是带宽还是延迟。
对于大查询我们要“分而治之”,将大查询切分成多个小查询。不过在一次查询能够胜任的情况下还拆成多个独立查询就不明智了。
例如:做数据库做 10 次查询,每次返回一行记录。
将关联查询进行分解,对每一个表进行一次单表查询,然后将结果在应用程序中进行关联。
例如:
SELECT *
FROM users
LEFT JOIN orders ON orders.user_id = users.user_id
LEFT JOIN goods ON goods.good_id = orders.good_id
WHERE users.name = 'zhangsan';
以上查询可以分解成下面的查询来代替:
SELECT * FROM users WHERE users.name = 'zhangsan';
SELECT * FROM orders WHERE orders.user_id = 103;
SELECT * FROM goods WHERE goods.good_id IN (123, 456, 789);
为什么要这样做呢?看起来好像没有什么好处,而且返回数据结果也是一致的。实际上利用分解查询的方式来重构查询有很大的优势,主要表现为:
如何处理高性能查询难题?
假如把高性能查询比作一个“难题”,它其实是包括多个子难题在内,共同作用的结果。
今天我们来归纳总结下,主要包括以下几类。
良好的库表数据结构设计原则是普遍适用的,但是 MySQL 有它自己的实现细节要注意。
总结应用原则如下,注意借鉴:
常见的 B-Tree 索引,按照顺序存储数据,所以 MySQL 可以用来做 ORDER BY 和 GROUP BY 操作。因为数据是有序的,所以便于将相关的列值都存储在一起。由于索引中存储了实际的列值,所以一些查询只通过索引就能够完成查询(如:聚簇索引)。
根据索引的特性,总结索引的优点有如下几点:
编写查询语句时候应该注意尽可能选择合适的索引,以避免单行查找,尽可能使用索引覆盖。
根据执行计划依次扫描相关表中的行,不在数据缓冲区的走 IO 存储引擎扫描表的性能消耗参考下面的 list,消耗从大到小:
全表扫描 > 全索引扫描 > 部分索引扫描 > 索引查找 > 唯一索引/主键查找 > 常量/null
应用查询优化是建立在良好的数据结构和合理的索引设计之上的。
它主要包括以下几种情况。
优化慢查询时,目标应该是找到一个更优的方案来达到我们获取结果数据的目的。其中可以存在多样的权衡方案:
MySQL 查询优化器并不是对所有查询都适用的,我们可以通过改写查询 SQL 来让数据库更高效的完成工作。
常见查询优化建议如下:
MySQL v5.6 版本以后,消除了很多 MySQL 原本的限制,让更多的查询能够以尽可能高的效率完成。
良好的表结构设计是高性能查询的基石,恰当的索引设计是高性能查询的助推器,同时合理的查询应用也是必不可少的。数据结构优化、索引设计优化及应用查询优化犹如三叉戟一般,齐头并进,在高性能查询应用中缺一不可。
全文总结一下,其实就是我们要学会用数据库的要求方式来执行 SQL。
即要写好应用查询 SQL,必须要结合良好的数据结构和合理的索引设计才可以。
其实 MySQL 查询优化中的每一项拆开讲都可以是很大的章节,在此主要是将解决问题的思路分享给大家,希望能对大家今后的工作中能有所帮助。
网页名称:处理MySQL慢查询的正确姿势
网站URL:http://www.mswzjz.cn/qtweb/news17/333867.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能