创新互联AI教程:AI人工智能基于感知器的分类器

感知器是 ANN 的基石。 如果您想了解更多关于 Perceptron 的信息,可以点击链接 - artificial_neural_network

成都创新互联公司是专业的玉林网站建设公司,玉林接单;提供成都网站制作、成都网站建设、外贸营销网站建设,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行玉林网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

以下是逐步执行 Python 代码,用于构建基于感知器的简单神经网络分类器 -

如下所示导入必要的软件包 -

import matplotlib.pyplot as plt
import neurolab as nl

请注意,这是一个监督学习的例子,因此您也必须提供目标值。

input = [[0, 0], [0, 1], [1, 0], [1, 1]]
target = [[0], [0], [0], [1]]

2 个输入和 1 个神经元创建网络 -

net = nl.net.newp([[0, 1],[0, 1]], 1)

现在,训练网络。 在这里使用 Delta 规则进行训练。

error_progress = net.train(input, target, epochs=100, show=10, lr=0.1)

接下来,可视化输出并绘制图表 -

plt.figure()
plt.plot(error_progress)
plt.xlabel('Number of epochs')
plt.ylabel('Training error')
plt.grid()
plt.show()

可以看到下图显示了使用错误度量标准的训练进度 -

本文标题:创新互联AI教程:AI人工智能基于感知器的分类器
链接地址:http://www.mswzjz.cn/qtweb/news15/106265.html

攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等

广告

声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能