Python 的 logging 模块实现了灵活的日志系统。整个模块仅仅 3 个类,不到 5000 行代码的样子,学习它可以加深对程序日志的了解,本文分下面几个部分:
logging 简介
logging API 设计
记录器对象 Logger
日志记录对象 LogRecord
处理器对象 Hander
格式器对象 Formatter
滚动日志文件处理器
小结
小技巧
本次代码使用的是 python 3.8.5
的版本,官方中文文档 3.8.8
。参考链接中官方中文文档非常详细,建议先看一遍了解日志使用。
类 | 功能 |
---|---|
logging-module | logging的API |
Logger | 日志记录器对象类,可以创建一个对象用来记录日志 |
LogRecord | 日志记录对象,每条日志记录都封装成一个日志记录对象 |
Hander | 处理器对象,负责日志输出到流/文件的控制 |
Formatter | 格式器,负责日志记录的格式化 |
RotatingFileHandler | 按大小滚动的日志文件记录器 |
TimedRotatingFileHandler | 按时间滚动的日志文件处理器 |
我们主要研究日志如何输出到标准窗口这一主线;日志的配置,日志的线程安全及各种特别的Handler等支线可以先忽略。
先看看日志使用:
- import logging
- logging.basicConfig(level=logging.INFO, format='%(levelname)-8s %(name)-10s %(asctime)s %(message)s')
- lang = {"name": "python", "age":20}
- logging.info('This is a info message %s', lang)
- logging.debug('This is a debug message')
- logging.warning('This is a warning message')
- logger = logging.getLogger(__name__)
- logger.warning('This is a warning')
输出内容如下:
- INFO root 2021-03-04 00:03:53,473 This is a info message {'name': 'python', 'age': 20}
- WARNING root 2021-03-04 00:03:53,473 This is a warning message
- WARNING __main__ 2021-03-04 00:03:53,473 This is a warning
可以看到 logging 的使用非常方便,模块直接提供了一组API。
- root = RootLogger(WARNING) # 默认提供的logger
- Logger.root = root
- Logger.manager = Manager(Logger.root)
- def debug(msg, *args, **kwargs): # info,warning等api类似
- if len(root.handlers) == 0:
- basicConfig() # 默认配置
- root.debug(msg, *args, **kwargs)
- def getLogger(name=None):
- if name:
- return Logger.manager.getLogger(name) # 创建特定的logger
- else:
- return root # 返回默认的logger
这种API的提供方式,我们在 requests 中也有看到。api中很重要的设置config的方式:
- def basicConfig(**kwargs):
- ...
- if handlers is None:
- filename = kwargs.pop("filename", None)
- mode = kwargs.pop("filemode", 'a')
- if filename:
- h = FileHandler(filename, mode)
- else:
- stream = kwargs.pop("stream", None)
- h = StreamHandler(stream) # 默认的handler
- handlers = [h]
- dfs = kwargs.pop("datefmt", None)
- style = kwargs.pop("style", '%')
- fs = kwargs.pop("format", _STYLES[style][1])
- fmt = Formatter(fs, dfs, style) # 生成formatter
- for h in handlers:
- if h.formatter is None:
- h.setFormatter(fmt)
- root.addHandler(h) # 设置root的handler
- level = kwargs.pop("level", None)
- if level is not None:
- root.setLevel(level) # 设置日志级别
可以看到,日志的配置主要包括下面几项:
level 日志级别
format 信息格式化模版
filename 输出到文件
%Y-%m-%d %H:%M:%S,uuu
时间的格式模版%
, {
,$] 格式样板演示代码输出中,可以看到debug日志没有显示,是因为 debug < info
:
- CRITICAL = 50
- FATAL = CRITICAL
- ERROR = 40
- WARNING = 30
- WARN = WARNING
- INFO = 20
- DEBUG = 10
- NOTSET = 0
查看Logger之前,先看logger对象的管理类Manager
- _loggerClass = Logger
- class Manager(object):
- def __init__(self, rootnode):
- self.root = rootnode
- self.disable = 0
- self.loggerDict = {} # 所有日志记录对象的字典
- ...
- def getLogger(self, name):
- rv = None
- if name in self.loggerDict:
- rv = self.loggerDict[name] # 获取已经创建过的同名logger
- ...
- else:
- rv = (self.loggerClass or _loggerClass)(name) # 创建新的logger
- rv.manager = self
- self.loggerDict[name] = rv
- ...
- return rv
日志过滤器
- class Filterer(object):
- def __init__(self):
- self.filters = []
- def addFilter(self, filter):
- self.filters.append(filter)
- def removeFilter(self, filter):
- self.filters.remove(filter)
- def filter(self, record):
- rv = True
- for f in self.filters: # 过滤日志
- if hasattr(f, 'filter'):
- result = f.filter(record)
- else:
- result = f(record) # assume callable - will raise if not
- if not result:
- rv = False
- break
- return r
核心的 Logger
实际上只是一个控制中心:
- class Logger(Filterer): # logger可以过滤日志
- def __init__(self, name, level=NOTSET):
- Filterer.__init__(self)
- self.name = name
- self.level = _checkLevel(level)
- self.parent = None # 日志可以有层级
- self.propagate = True
- self.handlers = [] # 可以输出到多个handler
- self.disabled = False # 可以关闭
- self._cache = {}
- def debug(self, msg, *args, **kwargs): # 输出debug日志
- if self.isEnabledFor(DEBUG):
- self._log(DEBUG, msg, args, **kwargs)
logger可以判断日志级别:
- def isEnabledFor(self, level):
- if self.disabled:
- return False
- try:
- return self._cache[level]
- except KeyError:
- try:
- if self.manager.disable >= level:
- is_enabled = self._cache[level] = False
- else:
- is_enabled = self._cache[level] = (
- level >= self.getEffectiveLevel()
- )
- return is_enabled
- def getEffectiveLevel(self):
- logger = self
- while logger:
- if logger.level:
- return logger.level
- logger = logger.parent
- return NOTSET
日志输出:
- def _log(self, level, msg, args, exc_info=None, extra=None, stack_info=False,
- stacklevel=1):
- ...
- fn, lno, func = "(unknown file)", 0, "(unknown function)"
- ...
- # 生成日志记录
- record = self.makeRecord(self.name, level, fn, lno, msg, args,
- exc_info, func, extra, sinfo)
- # 使用handler处理日志
- self.handle(record)
日志记录的生产,就是创建一个LogRecord对象:
- _logRecordFactory = LogRecord
- def makeRecord(self, name, level, fn, lno, msg, args, exc_info,
- func=None, extra=None, sinfo=None):
- ...
- rv = _logRecordFactory(name, level, fn, lno, msg, args, exc_info, func,
- sinfo)
- ...
- return rv
使用logger对象的所有handler处理日志:
- def handle(self, record):
- c = self
- found = 0
- while c:
- for hdlr in c.handlers: # 使用所有的handler处理日志
- found = found + 1
- if record.levelno >= hdlr.level:
- hdlr.handle(record)
root-logger的handler是在config中配置的:
- def basicConfig(**kwargs):
- ...
- root.addHandler(h) # 设置root的handler
日志记录对象非常简单:
- class LogRecord(object):
- def __init__(self, name, level, pathname, lineno,
- msg, args, exc_info, func=None, sinfo=None, **kwargs):
- ct = time.time()
- self.name = name # logger名称
- self.msg = msg # 日志标识信息
- ...
- self.args = args # 变量
- self.levelname = getLevelName(level)
- ...
- def getMessage(self):
- msg = str(self.msg)
- if self.args:
- msg = msg % self.args # 格式化消息
- return msg
顶级Handler定义了Handler的模版方法
- class Handler(Filterer): # 处理器也可以过滤日志
- def __init__(self, level=NOTSET):
- Filterer.__init__(self)
- self._name = None
- self.level = _checkLevel(level) # handler也有日志级别
- self.formatter = None
- _addHandlerRef(self)
- self.createLock()
- def handle(self, record): # 处理日志
- rv = self.filter(record) # 过滤日志
- if rv:
- self.acquire() # 申请锁
- try:
- self.emit(record) # 提交记录,由不同子类实现
- finally:
- self.release() # 释放锁
- return rv
默认的console流 StreamHandler
- class StreamHandler(Handler):
- terminator = '\n' # 自动换行
- def __init__(self, stream=None):
- Handler.__init__(self)
- if stream is None:
- stream = sys.stderr # 默认使用stderr输出
- self.stream = stream
- def emit(self, record):
- try:
- msg = self.format(record) # 格式化日志记录
- stream = self.stream
- stream.write(msg + self.terminator) # 写日志
- self.flush() # 刷新写缓存
- except Exception:
- ...
- def format(self, record):
- if self.formatter:
- fmt = self.formatter
- else:
- fmt = _defaultFormatter
- return fmt.format(record) # 使用格式化器格式化日志记录
为什么使用stderr,可以看下面的测试中的输出都是到console:
- print("haha")
- print("fatal error", file=sys.stderr)
- sys.stderr.write("fatal error\n")
格式化器主要使用Formatter和Style实现
- class Formatter(object):
- def __init__(self, fmt=None, datefmt=None, style='%', validate=True):
- self._style = _STYLES[style][0](fmt)
- self._fmt = self._style._fmt
- self.datefmt = datefmt
- def format(self, record):
- record.message = record.getMessage()
- s = self.formatMessage(record)
- return s
- def formatMessage(self, record):
- return self._style.format(record) # 格式化
Style类
- class PercentStyle(object):
- default_format = '%(message)s'
- asctime_format = '%(asctime)s'
- asctime_search = '%(asctime)'
- validation_pattern = re.compile(r'%\(\w+\)[#0+ -]*(\*|\d+)?(\.(\*|\d+))?[diouxefgcrsa%]', re.I)
- def __init__(self, fmt):
- self._fmt = fmt or self.default_format
- def usesTime(self):
- return self._fmt.find(self.asctime_search) >= 0
- def validate(self):
- """Validate the input format, ensure it matches the correct style"""
- if not self.validation_pattern.search(self._fmt):
- raise ValueError("Invalid format '%s' for '%s' style" % (self._fmt, self.default_format[0]))
- def _format(self, record):
- return self._fmt % record.__dict__ # 格式化日志记录对象
- def format(self, record):
- try:
- return self._format(record)
- except KeyError as e:
- raise ValueError('Formatting field not found in record: %s' % e)
线上的日志持续输出到一个文件的话,会让文件巨大,即有加剧了丢失的风险,也难以处理。通常有按照大小滚动或者按照日期滚动的方法,这个功能非常重要。先看滚动日志处理器模版:
- class BaseRotatingHandler(logging.FileHandler):
- def emit(self, record):
- try:
- if self.shouldRollover(record): # 判断是否需要滚动
- self.doRollover() # 滚动日志
- logging.FileHandler.emit(self, record) # 输出日志
- except Exception:
- self.handleError(record)
- def rotate(self, source, dest):
- if not callable(self.rotator):
- if os.path.exists(source):
- os.rename(source, dest) # 重命名日志文件
- else:
- self.rotator(source, dest)
按照文件大小滚动的处理器:
- class RotatingFileHandler(BaseRotatingHandler):
- def __init__(self, filename, mode='a', maxBytes=0, backupCount=0, encoding=None, delay=False):
- if maxBytes > 0:
- mode = 'a'
- BaseRotatingHandler.__init__(self, filename, mode, encoding, delay)
- self.maxBytes = maxBytes # 单个文件大小上限
- self.backupCount = backupCount # 日志备份数量
- def doRollover(self): # 执行滚动
- if self.stream:
- self.stream.close() # 关闭当前的流
- self.stream = None
- if self.backupCount > 0:
- for i in range(self.backupCount - 1, 0, -1):
- sfn = self.rotation_filename("%s.%d" % (self.baseFilename, i))
- dfn = self.rotation_filename("%s.%d" % (self.baseFilename,
- i + 1))
- if os.path.exists(sfn):
- if os.path.exists(dfn):
- os.remove(dfn)
- os.rename(sfn, dfn)
- dfn = self.rotation_filename(self.baseFilename + ".1")
- if os.path.exists(dfn):
- os.remove(dfn)
- self.rotate(self.baseFilename, dfn) # 重命名文件
- if not self.delay:
- self.stream = self._open() # 如果shouldRollover延迟,可以打开新的流
- def shouldRollover(self, record): # 判断是否需要滚动
- if self.stream is None: # 立即打开流
- self.stream = self._open()
- if self.maxBytes > 0:
- msg = "%s\n" % self.format(record)
- self.stream.seek(0, 2) #due to non-posix-compliant Windows feature
- if self.stream.tell() + len(msg) >= self.maxBytes: # 判断大小
- return 1
- return 0
文件大小滚动就是在记录日志时候判断文档是否超过上限,超过则重命名旧日志,生成新日志。
按照日期滚动的处理器:
- class TimedRotatingFileHandler(BaseRotatingHandler):
- def __init__(self, filename, when='h', interval=1, backupCount=0, encoding=None, delay=False, utc=False, atTime=None):
- BaseRotatingHandler.__init__(self, filename, 'a', encoding, delay)
- self.when = when.upper()
- self.backupCount = backupCount
- self.utc = utc
- self.atTime = atTime
- # 日期设置,支持多种方式
- if self.when == 'S':
- self.interval = 1 # one second
- self.suffix = "%Y-%m-%d_%H-%M-%S"
- self.extMatch = r"^\d{4}-\d{2}-\d{2}_\d{2}-\d{2}-\d{2}(\.\w+)?$"
- ...
- self.extMatch = re.compile(self.extMatch, re.ASCII)
- self.interval = self.interval * interval # multiply by units requested
- filename = self.baseFilename
- if os.path.exists(filename):
- t = os.stat(filename)[ST_MTIME] # 最后修改时间
- else:
- t = int(time.time())
- self.rolloverAt = self.computeRollover(t) # 提前计算终止时间
- def computeRollover(self, currentTime):
- # 判断的方法还是很长很复杂的,先pass
- def shouldRollover(self, record):
- t = int(time.time())
- if t >= self.rolloverAt: # 判断是否到期
- return 1
- return 0
- def doRollover(self):
- ...
- dfn = self.rotation_filename(self.baseFilename + "." +
- time.strftime(self.suffix, timeTuple))
- # 滚动日志文件
- if os.path.exists(dfn):
- os.remove(dfn)
- self.rotate(self.baseFilename, dfn)
- if self.backupCount > 0:
- for s in self.getFilesToDelete():
- os.remove(s)
- ...
- # 计算下一个时间点
- newRolloverAt = self.computeRollover(currentTime)
- ...
- self.rolloverAt = newRolloverAt
日期滚动就是计算最后时间点,超过时间点则重新生成新的日志文件。
logging的处理逻辑大概是这样的:
创建Logger对象,提供API,用来接收应用程序日志
Logger对象包括多个Handler
每个Handler有一个Formatter对象
每条日志都会生成一个LogRecord对象
使用不同的Handler对象将LogRecored对象提交到不同的流
每个日志对象通过Formatter格式化输出
可以使用按日期/文件大小的方式进行日志文件的滚动记录
覆盖对象的 __reduce__
方法,让对象支持 reduce 函数:
- class RootLogger(Logger):
- def __init__(self, level):
- Logger.__init__(self, "root", level)
- def __reduce__(self):
- return getLogger, ()
线程锁的创建和释放:
- _lock = threading.RLock()
- def _acquireLock():
- if _lock:
- _lock.acquire()
- def _releaseLock():
- if _lock:
- _lock.release()
线程锁的使用:
- def addHandler(self, hdlr):
- _acquireLock()
- try:
- self.handlers.append(hdlr)
- finally:
- _releaseLock()
- def removeHandler(self, hdlr):
- _acquireLock()
- try:
- self.handlers.remove(hdlr)
- finally:
- _releaseLock()
Logging in Python https://realpython.com/python-logging/
日志操作手册 https://docs.python.org/zh-cn/3.8/howto/logging-cookbook.html#cookbook-rotator-namer
Python 的日志记录工具 https://docs.python.org/zh-cn/3.8/library/logging.html
标题名称:Python如何仅用5000行代码,实现强大的logging模块?
URL链接:http://www.mswzjz.cn/qtweb/news14/428914.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能