微服务开发涉及了一些数据处理模块的开发,每个处理业务都会开发独立的微服务,便于后面拓展和流编排。
成都创新互联公司主要从事网站制作、做网站、网页设计、企业做网站、公司建网站等业务。立足成都服务彭水苗族土家族,十余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:13518219792
学习了 SpringCloud Data Flow 等框架,感觉这个框架对于我们来说太重了,维护起来也比较麻烦,于是根据流编排的思想,基于我们目前的技术栈实现简单的流编排功能。
简单的说,我们希望自己的流编排就是微服务可插拔,微服务数据入口及输出可不停机修改。
自己学习的话推荐使用 docker 安装,命令如下:
拉取镜像:
docker pull nacos/nacos-server
创建服务:
docker run --env MODE=standalone --name nacos -d -p 8848:8848 nacos/nacos-server
然后在浏览器输入 ip:8848/nacos,账号 nacos;密码 nacos。
docker 能够帮助我们快速安装服务,减少再环境准备花的时间。
org.springframework.boot
spring-boot-starter-parent
2.1.0.RELEASE
org.springframework.kafka
spring-kafka
com.alibaba.boot
nacos-config-spring-boot-starter
0.2.1
配置文件:
spring:
kafka:
bootstrap-servers: kafka-server:9092
producer:
acks: all
consumer:
group-id: node1-group #三个服务分别为node1 node2 node3
enable-auto-commit: false
# 部署的nacos服务
nacos:
config:
server-addr: nacos-server:8848
建议配置本机 host 就可以填写 xxx-server 不用填写服务 ip。
我们现在需要对三个服务进行编排,保障每个服务可以插拔,也可以调整服务的位置。
示意图如上:
①创建配置
通常流编排里面每个服务都有一个输入及输出,分别为 input 及 sink,所以每个服务我们需要配置两个 topic,分别是 input-topic output-topic,我们就在 nacos 里面添加输入输出配置。
nacos 配置项需要配置 groupId,dataId,通常我们用服务名称作为 groupId,配置项的名称作为 dataId。
如 node1-server 服务有一个 input 配置项,配置如下:
完成其中一个服务的配置,其它服务参考下图配置即可:
②读取配置
代码如下:
@Configuration
@NacosPropertySource(dataId = "input", groupId = "node1-server", autoRefreshed = true)
// autoRefreshed=true指的是nacos中配置发生改变后会刷新,false代表只会使用服务启动时候读取到的值
@NacosPropertySource(dataId = "sink", groupId = "node1-server", autoRefreshed = true)
public class NacosConfig {
@NacosValue(value = "${input:}", autoRefreshed = true)
private String input;
@NacosValue(value = "${sink:}", autoRefreshed = true)
private String sink;
public String getInput() {
return input;
}
public String getSink() {
return sink;
}
}
③监听配置改变
服务的输入需要在服务启动时候创建消费者,在 topic 发生改变时候重新创建消费者,移除旧 topic 的消费者,输出是业务驱动的,无需监听改变,在每次发送时候读取到的都是最新配置的 topic。
因为在上面的配置类中 autoRefreshed = true,这个只会刷新 nacosConfig 中的配置值,服务需要知道配置改变去驱动消费的创建业务,需要创建 nacos 配置监听。
/**
* 监听Nacos配置改变,创建消费者,更新消费
*/
@Component
public class ConsumerManager {
@Value("${spring.kafka.bootstrap-servers}")
private String servers;
@Value("${spring.kafka.consumer.enable-auto-commit}")
private boolean enableAutoCommit;
@Value("${spring.kafka.consumer.group-id}")
private boolean groupId;
@Autowired
private NacosConfig nacosConfig;
@Autowired
private KafkaTemplate kafkaTemplate;
// 用于存放当前消费者使用的topic
private String topic;
// 用于执行消费者线程
private ExecutorService executorService;
/**
* 监听input
*/
@NacosConfigListener(dataId = "node1-server", groupId = "input")
public void inputListener(String input) {
// 这个监听触发的时候 实际NacosConfig中input的值已经是最新的值了 我们只是需要这个监听触发我们更新消费者的业务
String inputTopic = nacosConfig.getInput();
// 我使用nacosConfig中读取的原因是因为监听到内容是input=xxxx而不是xxxx,如果使用需要自己截取一下,nacosConfig中的内容框架会处理好,大家看一下第一张图的配置内容就明白了
// 先检查当前局部变量topic是否有值,有值代表是更新消费者,没有值只需要创建即可
if(topic != null) {
// 停止旧的消费者线程
executorService.shutdownNow();
executorService == null;
}
// 根据为新的topic创建消费者
topic = inputTopic;
ThreadFactory threadFactory = new ThreadFactoryBuilder().setNameFormat(topic + "-pool-%d").build();
executorService = new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2), threadFactory);
// 执行消费业务
executorService.execute(() -> consumer(topic));
}
/**
* 创建消费者
*/
public void consumer(String topic) {
Properties properties = new Properties();
properties.put("bootstrap.servers", servers);
properties.put("enable.auto.commit", enableAutoCommit);
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("group.id", groupId);
KafkaConsumerconsumer = new KafkaConsumer<>(properties);
consumer.subscribe(Arrays.asList(topic));
try {
while (!Thread.currentThread().isInterrupted()) {
Duration duration = Duration.ofSeconds(1L);
ConsumerRecordsrecords = consumer.poll(duration);
for (ConsumerRecordrecord : records) {
String message = record.value();
// 执行数据处理业务 省略业务实现
String handleMessage = handle(message);
// 处理完成后发送到下一个节点
kafkaTemplate.send(nacosConfig.getSink(), handleMessage);
}
}
consumer.commitAsync();
}
} catch (Exception e) {
LOGGER.error(e.getMessage(), e);
} finally {
try {
consumer.commitSync();
} finally {
consumer.close();
}
}
}
}
流编排的思路整体来说就是数据流方向可调,我们以此为需求,根据一些主流框架提供的 api 实现自己的动态调整方案,可以帮助自己更好的理解流编码思想及原理。
在实际业务中,还有许多业务问题需要去突破,我们这样处理更多是因为服务可插拔,便于流处理微服务在项目灵活搭配。
标题名称:SpringBoot+Nacos+Kafka实现微服务流编排
本文来源:http://www.mswzjz.cn/qtweb/news14/395114.html
攀枝花网站建设、攀枝花网站运维推广公司-贝锐智能,是专注品牌与效果的网络营销公司;服务项目有等
声明:本网站发布的内容(图片、视频和文字)以用户投稿、用户转载内容为主,如果涉及侵权请尽快告知,我们将会在第一时间删除。文章观点不代表本网站立场,如需处理请联系客服。电话:028-86922220;邮箱:631063699@qq.com。内容未经允许不得转载,或转载时需注明来源: 贝锐智能